СВАРКА, ТЕРМООБРАБОТКА И

ТРУБНЫХ СИСТЕМ КОТЛОВ И ТРУБОПРОВОДОВ ПРИ МОНТАЖЕ И РЕМОНТЕ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

PTM-1c

РД 153-34.1-003-01

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДЕН приказом Минэнерго России от 02.07.2001 № 197 СОГЛАСОВАН письмом Госгортехнадзора России от 25.05.2001 г. № 03-35/263

СВАРКА, ТЕРМООБРАБОТКА И КОНТРОЛЬ

ТРУБНЫХ СИСТЕМ КОТЛОВ И ТРУБОПРОВОДОВ ПРИ МОНТАЖЕ И РЕМОНТЕ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

PTM-1c РД 153-34.1-003-01

Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования. РТМ-1с. РД 153-34.1-003-01.— СПб.: Издательство ДЕАН, 2002.— 464 с.

Настоящий РД, являющийся нормативно-техническим и производственно-технологическим документом, разработан на основе РД 34 15.027–93, который был переработан в соответствии с требованиями новых нормативных документов Госгортехнадзора России, новых стандартов, отраслевых инструктивных и руководящих материалов, а также с учетом замечаний научно-исследовательских, монтажных и ремонтных организаций.

Руководящий документ определяет технологию сборочно-сварочных работ, термической обработки сварных стыков труб, а также объем и порядок контроля и нормы оценки качества сварных соединений; он охватывает все виды сварки, применяющиеся при монтаже и ремонте энергетического оборудования и трубных систем котлов и трубопроводов.

Настоящий РД предназначен для персонала, занимающегося монтажом и ремонтом оборудования и трубопроводов электростанций и отопительных котельных, а также изготовлением трубопроводов (с рабочим давлением до 2,2 МПа и температурой не более 425 °C) и отдельных элементов котлов.

ПРЕДИСЛОВИЕ

РД 153-34.1-003—01 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования» (РТМ-1с) разработан Закрытым акционерным обществом «Прочность МК».

Документ согласован с Федеральным горным и промышленным надзором России (письмо от 25.05.01 № 03-35/263) и внесен на утверждение Департаментом электроэнергетики Минэнерго России и Департаментом техперевооружения и совершенствования энергоремонта РАО «ЕЭС России».

РД утвержден приказом Минэнерго России от 02.07.01 № 197 и вводится в действие с 01.01.2002 г.

С момента введения в действие настоящего РД утрачивает силу РД 34 15.027–93 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций» (РТМ-1с–93).

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Настоящий Руководящий документ (РД) предназначен для организаций, осуществляющих монтаж и ремонт трубопроводов и трубных систем паровых и водогрейных котлов независимо от параметров рабочей среды, а также изготовление трубопроводов с рабочим давлением до 2,2 МПа (22 кгс/см²) и температурой не более 425 °С и отдельных элементов котлов (водяных экономайзеров, пароперегревателей и др.) с использованием сварочных технологий на предприятиях Российской Федерации независимо от форм собственности.
- 1.2. Технологические рекомендации настоящего РД, касающиеся требований к монтажным сварным соединениям, должны учитывать заводы изготовители котлов и трубопроводов.
- 1.3. При ремонте оборудования ТЭС и отопительных котельных допускается изготавливать на заводах и ремонтных базах отдельные элементы котлов и трубопроводов независимо от параметров рабочей среды при условии наличия лицензии (разрешения) Госгортехнадзора России на этот вид деятельности и соблюдении требований настоящего РД или технологических указаний основного завода изготовителя этих элементов.
- 1.4. Требования РД распространяются на следующие изделия:

трубы поверхностей нагрева котлов, которые подпадают под действие Правил устройства и безопасной эксплуатации паровых и водогрейных котлов Госгортехнадзора России;

паровые котлы с давлением пара не более 0,07 МПа (0,7 кгс/см 2), водогрейные котлы и водоподогреватели с температурой нагрева воды не выше 388 K (115 $^{\circ}$ C);

коллекторы (камеры) котла;

трубопроводы пара и горячей воды всех категорий, на которые распространяются правила Госгортехнадзора России (см. приложение 1), в том числе трубопроводы в пределах котла и турбины, трубопроводы тепловых сетей;

барабаны котлов давлением до 4 МПа (40 кгс/см²) включительно (ремонт с помощью сварки);

трубопроводы пара и горячей воды, на которые не распространяются правила Госгортехнадзора России, в том числе трубопроводы тепловых сетей, дренажные, сливные, контрольно-измерительных приборов и средств автоматизации, воздушники:

трубопроводы фосфатирования, отбора проб и кислотных промывок;

мазутопроводы и маслопроводы;

газопроводы (трубопроводы горючего газа), находящиеся на территории монтируемого объекта (от газорегуляторного пункта до горелок котла), транспортирующие газ давлением не более 1,2 МПа ($12 \, \text{krc/cm}^2$);

трубопроводы наружных сетей водоснабжения и канализации.

Указанные элементы котлов и трубопроводы изготавливаются из углеродистых сталей, низколегированных теплоустойчивых и конструкционных сталей перлитного класса, высоколегированных сталей мартенситного, мартенситно-ферритного и аустенитного классов, характеристики которых приведены в приложениях 2 и 3*; материалы для изготовления фасонных деталей трубопроводов из листовой стали приведены в приложении 4.

Требования настоящего РД распространяются также на другие производства (помимо электростанций и отопительных котельных), в технологических циклах которых задействованы котлы, трубопроводы пара и горячей воды и другие трубопроводы, указанные в данном пункте РД.

1.5. Настоящий РД определяет технологию сборки, сварки и термообработки сварных стыков труб при монтаже и ремонте

^{*} Деление марок сталей, применяющихся в теплоэнергетике, на типы и классы приведено в табл. П.28.1 приложения 28, а обозначения групп сталей, принятые при аттестации сварщиков и при аттестации технологии сварки, — в табл. П.28.2 приложения 28.

изделий, перечисленных в п. 1.4, а также объем, порядок контроля и нормы оценки качества сварных соединений.

- 1.6. Настоящий РД регламентирует все виды сварки, применяющиеся при монтаже и ремонте изделий, указанных в п. 1.4, а также при изготовлении трубопроводов с рабочим давлением до 2,2 МПа (22 кгс/см²): ручную дуговую покрытыми электродами, ручную и автоматическую аргонодуговую неплавящимся электродом, газовую ацетиленокислородную, автоматическую под флюсом, механизированную в среде углекислого газа плавящимся электродом, механизированную порошковой проволокой.
- 1.7. Отступления от требований настоящего РД должны быть согласованы для объектов Минэнерго России с одной из организаций, указанной в приложении 31; для прочих объектов согласование может производиться с любой специализированной научно-исследовательской организацией данного профиля, указанной в приложениях к соответствующим правилам Госгортехнадзора России.

2. НОРМАТИВНЫЕ ССЫПКИ

В настоящем РД использованы ссылки на следующие нормативные документы:

Правила устройства и безопасной эксплуатации паровых и водогрейных котлов. Утверждены постановлением Госгортехнадзора России от 28.05.93 № 12. Изменения № 1 от 07.02.96 и № 2 от 10.07.2000.

Правила устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см²), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 388 К (115 °C). Утверждены приказом Минстроя России от 28.08.92 № 205. Изменения № 1 от 12.01.94, № 2 от 24.02.95 и № 3 от 21.01.2000.

Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды. Утверждены постановлением Гос-

гортехнадзора России от 18.07.94 № 45. Изменения № 1 от 13.01.97.

ПБ 03-164–97. Правила изготовления паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды с применением сварочных технологий. Утверждены постановлением Госгортехнадзора России от 06.06.97 № 20.

ПБ 03-108-96. Правила устройства и безопасной эксплуатации технологических трубопроводов. Утверждены постановлением Госгортехнадзора России от 02.03.95 № 11.

ПБ 03-273–99. Правила аттестации сварщиков и специалистов сварочного производства. Утверждены постановлением Госгортехнадзора России от 30.10.98 № 63.

ПБ 03-278-99. Технологический регламент проведения аттестации сварщиков и специалистов сварочного производства. Утвержден постановлением Госгортехнадзора России от 19.03.99 № 21.

Правила аттестации специалистов неразрушающего контроля. Утверждены постановлением Госгортехнадзора России от 19.08.92 № 21. Изменения от 14.07.95.

ГОСТ 8.326–89. ГСИ. Метрологическая аттестация средств измерений.

ГОСТ 8.513–84. ГСИ. Поверка средств измерений. Организация и порядок проведения.

ГОСТ 380–94. Сталь углеродистая обыкновенного качества. Марки.

ГОСТ 550–75. Трубы стальные бесшовные для нефтеперерабатывающей и нефтехимической промышленности. Технические условия.

ГОСТ 839–80Е. Провода неизолированные для воздушных линий электропередачи. Технические условия.

ГОСТ 977-88. Отливки стальные. Общие технические условия.

ГОСТ 1050–88. Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия.

ГОСТ 1460-81. Карбид кальция. Технические условия.

ГОСТ 1779–83*Е. Шнуры асбестовые. Технические условия.

ГОСТ 2246–70. Проволока стальная сварочная. Технические условия.

ГОСТ 2601–84. Сварка металлов. Термины и определения основных понятий.

ГОСТ 2850-95. Картон асбестовый. Технические условия.

ГОСТ 4543–71. Прокат из легированной конструкционной стали. Технические условия.

ГОСТ 5457–75. Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 5583–78. Кислород газообразный технический и медицинский. Технические условия.

ГОСТ 5632–72. Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки.

ГОСТ 5639–82. Стали и сплавы. Методы выявления и определения величины зерна.

ГОСТ 6102–94. Ткани асбестовые. Общис технические требования.

ГОСТ 6996–66. Сварные соединения. Методы определения механических свойств

ГОСТ 7512–82. Контроль неразрушающий. Соединения сварные. Радиографический метод.

ГОСТ 8050–85. Двуокись углерода газообразная и жидкая. Технические условия.

ГОСТ 9466–75. Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия.

ГОСТ 9467–75. Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы.

ГОСТ 10052–75. Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы.

ГОСТ 10157–79. Аргон газообразный и жидкий. Технические условия.

ГОСТ 10705–80. Трубы стальные электросварные. Технические условия.

ГОСТ 10706–76. Трубы стальные электросварные прямошовные. Технические требования.

ГОСТ 12766.1–90. Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.

ГОСТ 12766.2–90. Лента из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.

ГОСТ 12820–80. Фланцы стальные плоские приварные на P_y от 0,1 до 2,5 МПа (от 1 до 25 кгс/см²). Конструкция и размеры.

ГОСТ 14782–86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.

ГОСТ 18442–80. Контроль неразрушающий. Капиллярные методы. Общие требования.

ГОСТ 19281–89. Прокат из стали повышенной прочности. Общие технические условия.

ГОСТ 20072–74. Сталь теплоустойчивая. Технические условия.

ГОСТ 20295—85. Трубы стальные сварные для магистральных газонефтепроводов. Технические условия.

ГОСТ 21105–87. Контроль неразрушающий. Магнитопорошковый метод.

ГОСТ 21880–94. Маты прошивные из минеральной ваты теплоизоляционные. Технические условия.

ГОСТ 23949–80. Электроды вольфрамовые сварочные неплавящиеся. Технические условия.

ГОСТ 26271–84. Проволока порошковая для дуговой сварки углеродистых и низколегированных сталей. Общие технические условия.

ГОСТ Р 50431–92 (МЭК 584-1–77). Термопары. Часть 1. Номинальные статические характеристики преобразования.

СНиП 3.05.02-88*. Газоснабжение.

СНиП 3.05.03-85. Тепловые сети.

СНиП 3.05.04—85*. Наружные сети и сооружения водоснабжения и канализации.

ОСТ 24.125.60–89. Детали и сборочные единицы трубопроводов пара и горячей воды тепловых электростанций. Общие технические условия.

ОСТ 34 10.747–97. Детали и сборочные единицы трубопроводов ТЭС на $P_{\rm pa6}$ < 2,2 МПа (22 кгс/см²), t ≤ 425 °C. Трубы и прокат. Сортамент.

ОСТ 24.948.01–90. Электроды покрытые металлические для ручной дуговой сварки и наплавки оборудования атомных электростанций. Марки.

ОСТ 34 10.755–97. Фланцы плоские приварные с патрубками на $P_y \le 2,5$ МПа (25 кгс/см²) \mathcal{I}_y от 600 мм до 1600 мм. Конструкция и размеры.

ОСТ 108.030.40–79. Элементы трубные поверхностей нагрева, трубы соединительные в пределах котла, коллекторы стационарных паровых котлов. Технические условия.

OCT 108.030.113–87. Поковки из углеродистой и легированной стали для оборудования и трубопроводов тепловых и атомных станций. Технические условия.

ОСТ 108.961.03–79. Отливки из углеродистой и легированной стали для фасонных элементов с гарантированными характеристиками прочности при высоких температурах. Технические условия.

РД 04-265–99. Положение о порядке подготовки и аттестации работников организаций, эксплуатирующих опасные производственные объекты, подконтрольные Госгортехнадзору России. М.: ПИО ОБТ, 2000.

РД 34 10.068–91. Соединения сварные оборудования тепловых электростанций. Радиографический контроль. М.: Энергомонтажпроект, 1997.

РД 34 10.122–94. Унифицированная методика стилоскопирования деталей и сварных швов энергетических установок. М.: Энергомонтажпроект, 1994. РД 34 10.130-96. Инструкция по визуальному и измерительному контролю. М.: Энергомонтаж, 1996.

РД 34 17.302–97. Котлы паровые и водогрейные. Трубопроводы пара и горячей воды. Сосуды. Сварные соединения. Контроль качества. Ультразвуковой контроль. Основные положения. ОП 501 ЦД—97. М.: НПП «Норма», 1997.

РД 34 17.310–96. Сварка, термообработка и контроль при ремонте сварных соединений трубных систем котлов и паропроводов в период эксплуатации. М.: НПО ОБТ, 1997.

РДИ 34 38-043—86. Инструкция по оформлению технической документации на сварочные работы при ремонте оборудования ТЭС. М.: ПО «Союзтехэнерго», 1986.

РДИ 42-006—85. Технологические указания по поддуву защитного газа для защиты обратной стороны шва при сварке неповоротных стыков трубопроводов. М.: Энергомонтажпроект, 1985.

РД 108.021.112–88. Исправление дефектов в литых корпусных деталях паровых турбин и арматуры методом заварки без термической обработки. Л.: НПО ЦКТИ, 1988.

РД 2730.940.102–92. Котлы паровые и водогрейные, трубопроводы пара и горячей воды. Сварные соединения. Общие требования. М.: НПО ЦНИИТМАШ, 1992.

РД 2730.940.103–92. Котлы паровые и водогрейные, трубопроводы пара и горячей воды. Сварные соединения. Контроль качества. М.: НПО ЦНИИТМАШ, 1992.

ПНАЭ Г-7-015—89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Магнитопорошковый контроль.

ПНАЭ Г-7-018—89. Унифицированная методика контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Капиллярный контроль.

ПНАЭ Г-7-019—89. Унифицированная методика контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Контроль герметичности. Газовые и жидкостные методы.

Основные положения по обследованию и технологии ремонта барабанов котлов высокого давления из стали 16ГНМ, 16ГНМА и 22К. М.: Союзтехэнерго, 1978.

ТУ 3-923–75. Трубы котельные бесшовные механически обработанные из конструкционной марки стали.

ТУ 14-1-1457–75. Сталь рулонная горячекатаная низколегированная и углеродистая.

ТУ 14-1-1529–93. Заготовка трубная катаная и кованая для котельных труб.

ТУ 14-1-1787–76. Заготовка трубная кованая для котельных труб повышенного качества.

ТУ 14-1-1921–76. Сталь листовая низколегированная для прямошовных магистральных газонефтепроводных труб диаметром 530–820 мм.

ТУ 14-1-1950—89. Сталь листовая низколегированная для прямошовных газонефтепроводных труб 1020, 1220 и 1420 мм.

ТУ 14-1-2471–78. Сталь рулонная горячекатаная, углеродистая марки 20.

ТУ 14-1-2560–78. Заготовка трубная кованая для котельных труб.

ТУ 14-1-2870–80. Заготовка трубная из коррозионностой-кой стали марок 12X13 Γ 12AC2H2 (ДИ 50) и 10X13 Γ 12БC2H2Д2 (ДИ 59).

ТУ 14-1-4248–87. Прокат рулонный горячекатаный низколегированный.

ТУ 14-1-4369-87. Проволока стальная сварочная из низкоуглеродистых и легированных сталей для сварки в защитных газах для атомного машиностроения. Технические условия.

ТУ 14-1-5185–93. Заготовка трубная из стали марки 20-ПВ, выплавленной на железе прямого восстановления, для котельных труб.

ТУ 14-1-5271-94. Заготовка трубная из стали марки 12X1МФ-ПВ, выплавленной на железе прямого восстановления, для котельных труб.

- **ТУ 14-3-341–75.** Трубы плавниковые холоднокатаные из стали марок 12X1МФ и 20 для паровых котлов.
- **ТУ 14-3-420-75.** Трубы стальные бесшовные горячедеформированные толстостенные для паровых котлов и трубопроводов.
- **ТУ 14-3-460–75.** Трубы стальные бесшовные для паровых котлов и трубопроводов.
- **ТУ 14-3-620–92.** Трубы стальные электросварные прямошовные диаметром 1020 мм.
- **ТУ 14-3-796—79.** Трубы бесшовные холоднодеформированные для паровых котлов и трубопроводов из коррозионностойкой стали.
- **ТУ 14-3-808–78.** Трубы электросварные спиральношовные из углеродистой стали 20 для трубопроводов атомных электростанций.
- **ТУ 14-3-917–80.** Трубы холоднодеформированные из коррозионностойкой стали марок 12X13Г12AC2H2 (ДИ 50) и $10X13\Gamma12$ BC2H2Д2 (ДИ 59).
- **ТУ 14-3-954—80.** Трубы стальные электросварные спиральношовные диаметром 530—1420 мм для трубопроводов тепловых сетей.
- **ТУ 14-3-1412–86.** Трубы бесшовные тепло- и холоднодеформированные из стали марки 10Х9МФБ-Ш (ДИ 82-Ш).
- **ТУ 14-3-1698–90.** Трубы стальные электросварные прямошовные диаметром 1020, 1220 мм для газонефтепроводов.
- ТУ 14-3-1881–93. Трубы стальные бесшовные для паровых котлов и трубопроводов из стали марки 20-ПВ производства Оскольского электрометаллургического комбината (ОЭМК).
- ТУ 14-3-1952–94. Трубы стальные бесшовные для паровых котлов и трубопроводов из стали марки 12Х1МФ-ПВ производства Оскольского электрометаллургического комбината (ОЭМК).
 - ТУ 14-4-982-79. Проволока порошковая марки ПП-АН3.
 - ТУ 14-4-1059-80. Проволока порошковая марки ПП-АН8.
 - ТУ 14-4-1121-81. Проволока порошковая марки ПП-АН1.

ТУ 14-4-1442–87. Проволока порошковая марки ПП-АН7.

ТУ 14-131-871–93 с изменением № 3. Заготовка трубная из коррозионностойкой стали марки 10X13Г12БС2Н2Д2 (ДИ 59) и 10X13Г12БС2Н2Д2-Ш (ДИ 59-Ш).

ТУ 14-134-319–93. Заготовка трубная из коррозионностойкой стали марки 10Х9МФБ-Ш (ДИ 82-Ш).

ТУ 16.505.657–74. Провода с резиновой изоляцией для электрифицированного транспорта.

ТУ 16-705.466–87. Провода медные неизолированные гибкие.

ТУ 16.К19-04–91. Провода термоэлектродные. Технические условия.

ТУ 16.К73.03–88. Кабели силовые гибкие на напряжение до 220 В.

ТУ 16.К73.05–93. Кабели силовые гибкие на напряжение 660 В.

ТУ 36-44-15-7-88. Проволока порошковая марки СП-2.

ТУ 36.44.15-8–88. Электронагреватели комбинированного действия.

ТУ 34 10.10169–90. Электроды покрытые металлические для ручной дуговой сварки марки ТМЛ-1У. Технические условия.

ТУ 34 10.10174–90. Электроды покрытые металлические для ручной дуговой сварки марки ТМЛ-3У. Технические условия.

ТУ 36-2516-83. Проволока порошковая марки СП-3.

ТУ 48-19-27-87. Вольфрам лантанированный в виде прутков.

ТУ 108.874—**95.** Трубы центробежнолитые из стали 15ГС и 15Х1М1Ф.

Единый тарифно-квалификационный справочник работ и профессий рабочих. Выпуск 2, части 1 и 2. М., 2000 (приложение к постановлению Министерства труда и социального развития Российской Федерации от 15.11.99 № 45).

Квалификационный справочник должностей руководителей, специалистов и других служащих. М., 2000, 2-е издание, дополненное (утвержден постановлением Минтруда России от 21.08.98 № 37).

3. ОСНОВНЫЕ ПОЛОЖЕНИЯ ОРГАНИЗАЦИИ СВАРОЧНЫХ РАБОТ ПРИ ИЗГОТОВЛЕНИИ, МОНТАЖЕ И РЕМОНТЕ КОТЛОВ И ТРУБОПРОВОДОВ

- 3.1. Изготовление, монтаж и ремонт изделий, указанных в п. 1.4, а также контроль качества металла и сварных соединений этих изделий должны выполняться предприятиями (организациями), имеющими лицензию (разрешение) соответствующего надзорного органа на выполнение таких работ.
- 3.2. Предприятие, выполняющее сварку изделий, на которые распространяются правила Госгортехнадзора России, должно иметь разрешение Госгортехнадзора России на применение конкретной технологии сварки, используемой на данном предприятии. Такое разрешение выдается на основании результатов производственной аттестации технологии сварки, выполненной предприятием в соответствии с требованиями ПБ 03-164—97.
- 3.3. При изготовлении трубопроводов на заводах сборочно-сварочные работы необходимо выполнять по технологическому процессу, разработанному в соответствии с требованиями настоящего РД и других нормативно-технических документов (НТД), с учетом конкретных условий производства.

Основные положения организации и технологии работ по сборке, сварке, термообработке и контролю сварных соединений при монтаже и ремонте котлов и трубопроводов должны быть отражены в проекте производства монтажных и ремонтных работ (ППР), разработанном в соответствии с требованиями настоящего РД и других нормативных документов. ППР разрабатывается организацией — производителем работ или по ее заданию специализированной проектной организацией. Примерное содержание раздела сварочных работ ППР приведено в приложении 5.

Рекомендуемая структура служб сварки и контроля монтажного и ремонтного участков приведена в приложении 6.

Определяющими факторами при выборе технологии сварочных работ должны быть реальная возможность материального (оборудование, сварочные и вспомогательные материалы, оснастка и т. д.) и организационно-технического (энерго- и газопитание, наличие квалифицированных кадров и т. п.) обеспечения прогрессивных способов сварки и степень их освоения данным предприятием.

- 3.4. При выборе способа сварки следует руководствоваться следующими основными положениями:
- а) стыки трубопроводов предпочтительнее сваривать комбинированным способом: корневую часть шва ручной или автоматической аргонодуговой сваркой неплавящимся электродом, остальное сечение ручной дуговой сваркой покрытыми электродами, при этом стык сваривают без остающегося подкладного кольца; если применяют сварное соединение с подкладным остающимся кольцом, весь шов (включая корневой слой) можно выполнять ручной дуговой сваркой;
- б) стыки труб поверхностей нагрева, импульсных трубок контрольно-измерительных приборов, напорных маслопроводов системы смазки, стыки трубопроводов системы регулирования турбины, трубопроводов, подвергающихся гуммированию, спедует сваривать преимущественно комбинированным способом; при толщине стенки труб до 10 мм можно все сечение шва выполнять аргонодуговой сваркой; настоящая рекомендация не исключает возможности применения ручной дуговой сварки для всего сечения шва стыков труб указанных элементов.

При значительном объеме ремонтных работ, связанных с изготовлением новых трубных элементов котлов (экранов, пароперегревателей, водяных экономайзеров) и трубопроводов диаметром до 100 мм, бывает экономически целесообразно применять контактную стыковую сварку. Контактная сварка должна выполняться в стационарных условиях по технологии, разработанной для конкретных типов стыкосварочных машин и согласованной с одной из специализированных научно-исследовательских организаций, приведенных в приложениях к правилам Госгортехнадзора России;

- в) для соединения стыков труб малого диаметра (до 100—150 мм) с толщиной стенки не более 8 мм из углеродистых и низколегированных сталей с ограничениями, приведенными в п. 10.2, может применяться газовая ацетиленокислородная сварка;
- г) для соединения стыков труб из углеродистых и кремнемарганцовистых сталей рекомендуется применять (преимущественно при изготовлении трубопроводов на заводах) механизированную сварку в среде углекислого газа (двуокиси углерода) и автоматическую под слоем флюса;
- д) продольные швы газоплотных панелей котлов следует сваривать ручной дуговой или механизированной сваркой в среде углекислого газа или порошковой проволокой;
- е) во всех остальных случаях следует использовать ручную дуговую сварку или механизированную в среде углекислого газа.
- 3.5. Стыки труб необходимо собирать в последовательности, обеспечивающей свободный подход к стыкам для их сварки и контроля качества швов, а также для переварки стыков; на это должно быть обращено особое внимание во время приварки труб к штуцерам коллекторов (или непосредственно к коллекторам), т. к. эти стыки часто размещаются в труднодоступных местах. В ППР должна быть разработана схема крепления трубопровода в месте сварки монтажных стыков.
- 3.6. Сборку трубопроводов в укрупненные пространственные блоки (узлы) следует производить на специальном стенде, обеспечивающем правильное взаимное расположение элементов блока. На горизонтальных участках необходимо предусмотреть установку временных опор или подвесок на расстоянии не более 1 м от стыка, чтобы исключить провисание труб и разгрузить сварной шов при сварке и термообработке. Временные опоры (подвески) удаляют только после заварки всего сечения стыка и окончания его термообработки.

Блоки (узлы) трубопроводов и поверхностей нагрева котлов, в которых элементы соединены только прихватками или корневым швом, запрещается перемещать, транспортировать, подвергать воздействию каких-либо нагрузок во избежание

образования трещин в швах, а также оставлять незаваренными на срок более одних суток.

Примечание. На заводах при поточно-операционном методе изготовления трубопроводов разрешается блок, собранный на прихватках, перемещать на место для сварки при условии, что технологическим процессом предусмотрен способ перемещения, который обеспечивает отсутствие трещин в прихватках, изгибов и смещений в стыках. После перемещения прихваточные швы должны быть подвергнуты внешнему осмотру с целью выявления в них трещин.

- 3.7. В монтажных условиях стыки труб из низколегированных теплоустойчивых сталей при толщине стенки более 12 мм и из прочих сталей при толщине стенки более 20 мм следует сваривать неповоротными во избежание появления трещин в первых слоях шва во время поворота. Если сварка производится на вращающихся устройствах, то стыки труб независимо от толщины стенки можно сваривать поворотными.
- 3.8. Для обеспечения стабильного режима сварки и нагрева стыков при термообработке источники электропитания целесообразно подсоединять к отдельным силовым трансформаторам, к которым не должны подключаться другие потребители. Колебания напряжения питающей сети не должны превышать ±5% от номинального значения.

Если на сборочной площадке или в главном корпусе сварку труб будут выполнять одновременно более 10 сварщиков, рекомендуется использовать многопостовые источники питания (выпрямители или преобразователи) с кольцевой разводкой сварочного тока. Аналогичные разводки рекомендуется применять для термообработки сварных соединений током средней частоты.

3.9. Сечение провода, присоединяющего источник питания для сварки или термообработки к сети, следует подбирать по данным табл. 3.1. При ручной дуговой сварке электрододержатель соединяют со сварочной цепью гибким медным проводом с резиновой изоляцией марки ПРД, ПРИ, КОГ1, КОГ2, се-

чение которого необходимо выбирать в зависимости от сварочного тока: при токе до 100 A — не менее 16 мм², при 250 A — 25 мм², при 300 A — 50 мм². Длина гибкого провода должна быть не менее 5 м.

Таблица 3.1

Сечение провода для подключения к питающей сети источника питания для сварки и термообработки

Источники питания	Сечение одной жилы медного провода*, мм², при напряжении сети 380 В
Сварочные трансформаторы, преобразователи или выпрямители на максимальный ток, А:	
до 300	10
до 500	16
до 1000	50
до 2000	75
до 3000	120
Преобразователи (для термообработки сварных соединений):	
средней частоты	
впч-50	50
ВПЧ-100	70
ППЧВ-250	120
тиристорные (инверторы):	
СЧИ-100	70
ИТ-100	70

^{*} Сечение алюминиевого провода должно быть примерно в 1,5 раза больше.

- 3.10. На заводе, монтажном (ремонтном) участке необходимо оборудовать в теплом помещении склад (кладовую) для электродов, сварочной проволоки и флюса. В нем должна поддерживаться температура не ниже 15 °C при относительной влажности не более 50%. Электроды следует хранить на стеллажах раздельно по маркам и партиям. На складе (или в другом подходящем месте) должны быть установлены печь для прокалки электродов при температуре до 400 °C и сушильный шкаф с температурой 80–115 °C, обеспечивающие потребность организации в электродах. Если электроды используются сразу после прокалки (в течение суток) или в течение времени, указанного в п. 4.1.4, и при этом на складе, где хранятся электроды, поддерживаются температура и влажность воздуха согласно требованиям настоящего пункта, наличие сушильного шкафа не является обязательным.
- 3.11. Очистку, рубку и намотку в кассеты проволоки для механизированной сварки должен производить специально выделенный для этого рабочий. На всех кассетах с намотанной проволокой должны быть этикетки с указанием марки, плавки и диаметра проволоки.
- 3.12. Место сварки и термообработки необходимо защитить от ветра, сквозняков и атмосферных осадков и обеспечить первичными средствами для тушения пожара в соответствии с инструкцией, разработанной согласно п. 3.14. При сварке и термообработке стыков труб из закаливающихся сталей (мартенситно-ферритного класса и низколегированных теплоустойчивых перлитного класса) концы труб следует закрывать заглушками.
- 3.13. Сварщик должен быть обеспечен необходимым набором инвентаря и инструментов. Электросварщики (в том числе операторы механизированной сварки) должны иметь защитный щиток или маску, рукавицы, молоток, зубило или крейцмейсель для отбивки шлака, стальную щетку, струбцину (зажим) для обратного провода, личное клеймо и шаблоны для проверки размеров и формы швов. Кроме того, у сварщиков

ручной дуговой сварки должны быть пеналы или пакет из влагостойкой бумаги для хранения электродов и ящик или сумка для электродов с отделением для огарков; у сварщиков ручной аргонодуговой сварки неплавящимся электродом — кожаные (или хлопчатобумажные) перчатки, набор заточенных вольфрамовых электродов и пассатижи; у сварщиков-операторов автоматической сварки неплавящимся электродом — набор заточенных вольфрамовых электродов, пенал для проволоки, комплект гаечных ключей к сварочному автомату, пассатижи с кусачками для проволоки.

Газосварщики должны иметь защитные очки со светофильтрами типа Г, молоток, зубило, стальную щетку и личное клеймо.

- 3.14. Администрация предприятия производителя работ должна разработать для персонала, осуществляющего сборку, сварку, термообработку и контроль качества сварных соединений труб котлов и трубопроводов, инструкции по безопасности труда в соответствии с требованиями действующих нормативнотехнических документов (СНиП, ГОСТ, правил, инструкций).
- 3.15. В процессе подготовки элементов котлов и трубопроводов под сварку, сборки, сварки, термообработки и исправления дефектов сварных соединений должен быть обеспечен операционный контроль за этими работами.

4. СВАРОЧНЫЕ МАТЕРИАЛЫ

4.1. Электроды для ручной дуговой сварки

4.1.1. Для ручной дуговой сварки стыков трубопроводов и котлов из углеродистых, низколегированных и высоколегированных сталей необходимо применять электроды, удовлетворяющие требованиям ГОСТ 9466, 9467 и 10052. Марку электродов следует выбирать в зависимости от марки свариваемой стали. Для сварки изделий, на которые распространяется настоящий РД, могут быть использованы отечественные электроды, приведенные в табл. 4.1; химический состав и механические свойства наплавленного металла этих электродов даны в приложении 7.

Марки электродов зарубежных фирм, которые могут применяться, указаны в приложении 8; там же приведен тип электродов согласно отечественной классификации для определения области применения конкретной марки электродов.

Возможность применения электродов, не указанных в табл. 4.1 и в приложениях 7 и 8, для объектов Минэнерго России должна быть согласована с ЗАО «Прочность МК», для других объектов — с любой специализированной научно-исследовательской организацией в области сварки, приведенной в приложениях к правилам Госгортехнадзора России.

4.1.2. Электроды для приварки деталей крепления из высоколегированных сталей к трубам пароперегревателя и другим элементам котла или к трубопроводу из низколегированных перлитных сталей, а также для сварки деталей крепления необходимо выбирать по данным табл. 4.2.

Для приварки креплений из стали любой марки к трубам из стали аустенитного класса следует применять электроды ЭА-395/9, ЗИО-8, ОЗЛ-6, ЦЛ-25, ЦТ-10, НИАТ-5, из стали 12X11B2MФ – электроды ЭА-400/10У и ЭА-400/10Т.

4.1.3. Перед сваркой производственных стыков и испытаниями электроды должны быть прокалены по режиму, приведенному в соответствующем документе (ОСТ, ТУ) или этикетке. В случае отсутствия таких данных режим прокалки выбирается по табл. 4.3.

Импортные электроды прокаливают по тому же режиму, что и отечественные с аналогичным типом покрытия.

4.1.4. Электроды с основным покрытием, предназначенные для сварки перлитных сталей, следует использовать в течение 5 суток после прокалки, электроды ЦТ-45 – в течение 10 суток, остальные электроды – в течение 15 суток, если их хранят на складе с соблюдением требований п. 3.10. По истечении указанного срока электроды перед применением необходимо вновь прокалить. В случае хранения электродов в сушильном шкафу при температуре 80—115 °C срок их годности не ограничивается.

Области применения электродов для сварки трубопроводов и элементов котлов

, ,	ктеристин ваемой ст		Марка
Группа по ПБ 03-164-97	Тип, класс стали	Марка стали	электродов*
1	Углеро- дистая	08, 10, 20, Ст2, Ст3, Ст3Г	АНО-4**, АНО-6М**, ВСЦ-4А***, МР-3**, МР-3Р**, МР-6**, ОЗС-4**, ОЗС-6**, Ротекс-ОЗС-12**, ОЗС-12**, ЛЭЗОЗС-12**, АНО-18**, АНО-24**, УОНИ-13/45, УОНИ-13/55, ЛЭЗУОНИ-13/55, УОНИ-13/55С, ИТС-4С, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-5, ЛЭЗЦУ-5, ЦУ-7, ЦУ-8, ЦУ-6, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02
1	Углеро- дистая	Ст4, 15Л, 20Л, 25Л	УОНИ-13/45, УОНИ-13/55, УОНИ-13/55С, ЛЭЗУОНИ-13/55, ИТС-4С, ВСЦ-4А***, ЦУ-5, ЛЭЗЦУ-5, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-7, ЦУ-8, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02

	ктеристин заемой ст		Марка
Группа по ПБ 03-164-97	Тип, класс стали	Марка стали	электродов*
1	Низко- легиро- ванная конст- рукци- онная	15FC, 16FC, 17FC, 14FH, 16FH, 09F2C, 10F2C1, 14XFC, 20FCЛ, 17F1C, 17F1CY	ВСЦ-4А***, ЦУ-5, ЛЭЗЦУ-5, УОНИ-13/55, ЛЭЗУОНИ-13/55, УОНИ-13/55С, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-7, ЦУ-8, ИТС-4С, АНО-11, МТГ-01К, МТГ-02
4	Низко- легиро- ванная тепло- устой- чивая: трубы диамет- ром 100 мм и менее		ТМЛ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-39, ЛЭЗЦЛ-39, ЦЛ-38, ЛЭЗТМЛ-ЗУ, ТМЛ-ЗУ
	трубы диамет-	12MX, 15XM, 20XMЛ	ТМЛ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-38
	ром более 100 мм	при темпе- ратуре сре-	ТМУ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-20, ЦЛ-20М, ЦЛ-39, ЛЭЗЦЛ-39, ТМЛ-3У, ЛЭЗТМЛ-ЗУ, ЦЛ-38

	ктеристи заемой ст		Марка
Группа по ПБ 03-164-97	Тип, класс стали	Марка стали	электродов*
		12X1MФ, 15X1M1Ф, 20XМФЛ, 15X1M1ФЛ, 15X1M1Ф- ЦЛ, рабо- тающие при температуре среды до 570°С вклю- чительно	ЦЛ-20, ЦЛ-20М, ТМЛ-3У, ЛЭЗТМЛ-3У, ЦЛ-39, ЛЭЗЦЛ-39, ЦЛ-45
Электро		варки труб п рева котлов	оверхностей
5	Легиро- ванная мартен- ситная	10Х9МФБ (ДИ 82-Ш)	ЦП-57
6	Высоко- легиро- ванная мартен- ситно- феррит- ная	12X11B2MФ (ЭИ756)	ЭА-400/10У, ЛЭЗЭА-400/10У, ЭА-400/10Т
	Высоко- легиро- ванная аусте- нитная:		

	ктеристия заемой ст		Марка
Группа по ПБ 03-164-97	Тип, класс стали	Марка стали	электродов*
	хромо- никеле- вая	12X18H12T, 12X18H10T	ЦТ-26, ЭА-400/10У, ЛЭЗЭА-400/10У, ЭА-400/10Т, ЦТ-26М, ЦТ-15, ЛЭЗЦТ-15, ЦТ-15-1, ЦТ-15К
	хромо- марган- цевая	10X13Г12БС 2Н2Д2 (ДИ 59)	ЦТ-15****, ЛЭЗЦТ-15****

^{*} Электроды АНО-6М, МР-3, ОЗС-4, ОЗС-6, ОЗС-12 предназначены для сварки на переменном и постоянном токе обратной полярности (плюс на электроде), МР-3Р — на переменном и постоянном токе (минус на электроде), АНО-4 и АНО-24 — на переменном и постоянном токе любой полярности, АНО-18, Ротекс-ОЗС-12, МР-ЗС, ЛЭЗОЗС-12 — на переменном и постоянном токе прямой полярности, ВСЦ-4А — на постоянном токе любой полярности, электроды остальных марок — на постоянном токе обратной полярности.

Примечание. Электроды, в обозначении марки которых впереди стоят буквы ЛЭЗ (ЛЭЗОЗС-12, ЛЭЗУОНИ-13/55, ЛЭЗТМУ-1У и др.), изготавливаются Лосиноостровским электродным заводом и имеют те же характеристики (см. приложение 7), области применения (см. табл. 15.1) и режимы прокалки (см. табл. 4.3), что и электроды без этих трех букв (ОЗС-12, УОНИ-13/55, ТМЛ-1У и др.).

^{**} Можно применять для сварки следующих узлов из углеродистых сталей: трубопроводов пара и горячей воды категорий III и IV; трубопроводов в пределах котла и турбины с рабочим давлением не более 4 МПа (40 кгс/см²) и температурой не более 320 °C; трубопроводов, на которые не распространяются правила Госгортехнадзора России, кроме трубопроводов регулирования турбины, маслопроводов и мазутопроводов.

^{***} Для сварки только корневого слоя стыков трубопроводов диаметром 219 мм и более без подкладных колец.

^{****} Для выполнения основной части разделки при комбинированной сварке (корневой слой сваривается ручной аргонодуговой сваркой).

Области применения электродов для приварки креплений к трубам

Сталь привариваемой детали	Марки электродов
20X13, 31X19Н9МВБТ, X23H13Г2, X20Н9	ОЗЛ-6, ЦЛ-9, ЦЛ-25/1, ЦЛ-25/2, ЗИО-8, ЭА-395/9, НИАТ-5
13X11H2B2MФ, 20X12BHMФ, 18X12BMБФР, XH35BT	ЭА-395/9, ЦТ-10, НИАТ-5

Примечание. Все электроды предназначены для сварки постоянным током обратной полярности.

Таблица 4.3

Режимы прокалки электродов, порошковой проволоки и флюсов

Марка сварочного материала	1 .	Режимы повто (перед использо прокалки	
	температура, °С		продол- житель-
	номи- нальная	предель- ное от- клонение	ность, ч (допуск +0,5 ч)
Электроды ТМУ-21У, ЦУ-5, ЦУ-6, ЦУ-7, ЦУ-8, ИТС-4С, УОНИ-13/45, УОНИ-13/55, УОНИ-13/55С, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02, ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ЦЛ-20, ЦЛ-20М, ТМЛ-3У, ЦЛ-45, ЦЛ-57	360	±20	2,0

Марка сварочного материала		кимы повто д использо прокалки	ванием)	
		ратура, °С	продол- житель-	
	номи- нальная	предель- ное от- клонение	ность, ч (допуск +0,5 ч)	
Электроды				
MP-3, MP-3P, MP-6, AHO-4, AHO-6M, ОЗС-4, ОЗС-6, ОЗС-12, Ротекс-ОЗС-12, AHO-18, AHO-24	170	±20	1,0	
ОЗЛ-6, ЗИО-8, ЭА-400/10У, ЭА-400/10Т, ЭА-395/9, НИАТ-5	220	±20	1,0	
ЦТ-15, ДТ-15-1, ЦТ-15К, ЦТ-26, ЦТ-26М, ЦЛ-25/1, ЦЛ-25/2, ЦЛ-9, ЦТ-10, ЦТ-45	330	±20	1,5	
ВСЦ-4А	100	±10	1,0	
Порошковая проволока				
ПП-АН1	165	±15	1,0	
ПП-АНЗ, ПП-АН7	240	±10	2,0	
СП-2	200	±10	1,5	
ПП-АН8	245	±5	2,0	
CП-3	200	±10	1,5	
Флюсы				
АН-348А, АН-348АМ, ОСЦ-45, ОСЦ-45М, АНЦ-1	350	±50	1,0	
АН-42, АН-42М, ФЦ-22	650	±20	4,0	
ФЦ-11	375	±20	4,0	
ФЦ-16	620	±20	4,0	
AH-43	450	±20	2,0	

Примечание. Прокалка электродов может производиться не более трех раз. Число прокалок порошковой проволоки и флюса не ограничивается. Если электроды после трехкратной прокалки показали неудовлетворительные сварочно-технологические свойства, то применение их для сварочных работ, выполняемых по настоящему РД, не допускается.

4.2. Сварочная проволока

4.2.1. Для ручной и автоматической аргонодуговой сварки неплавящимся электродом, газовой (ацетиленокислородной) сварки, механизированной в углекислом газе и автоматической сварки под флюсом необходимо применять сварочную проволоку сплошного сечения, удовлетворяющую требованиям ГОСТ 2246. Марку сварочной проволоки следует подбирать по данным табл. 4.4.

Химический состав сварочной проволоки сплошного сечения по ГОСТ 2246 приведен в табл. П9.1 приложения 9.

- 4.2.2. Поверхность проволоки сплошного сечения должна быть чистой, без окалины, ржавчины, масла и грязи. При необходимости ее очищают от ржавчины и грязи пескоструйным аппаратом или травлением в 5%-ном растворе соляной или ингибированной кислоты (3%-ный раствор уротропина в соляной кислоте). Можно очищать проволоку, пропуская ее через специальные механические устройства (в том числе через устройства, заполненные сварочным флюсом, кирпичом, осколками наждачных кругов и войлочными фильтрами). Перед очисткой бухту проволоки рекомендуется отжечь при 150–200 °C в течение 1,5—2 часов. Разрешается также очищать проволоку наждачной шкуркой или другим способом до металлического блеска. При очистке проволоки, предназначенной для автоматической сварки, нельзя допускать ее резких перегибов (переломов).
- 4.2.3. Для механизированной сварки порошковой проволокой следует применять самозащитные порошковые проволоки, изготовленные по ГОСТ 26271 и соответствующим техническим условиям.

Характеристика этих проволок приведена в табл. П9.2 приложения 9.

Порошковую проволоку необходимо хранить в мотках в специальной таре. Перемотка порошковой проволоки запрещается.

Перед применением порошковая проволока должна быть прокалена по режиму, приведенному в табл. 4.3. После прокалки проволока может быть использована в течение 5 суток, если она хранится в соответствии с требованиями п. 3.10. По истечении указанного срока порошковую проволоку перед применением следует вновь прокалить.

4.3. Флюс для автоматической сварки

- 4.3.1. Для автоматической сварки под флюсом поворотных стыков труб из углеродистой и низколегированной конструкционной стали следует применять флюс марок, приведенных в табл. 4.4.
- 4.3.2. Флюс необходимо хранить в сухом помещении в соответствии с требованиями п. 3.10.
- 4.3.3. Перед применением флюс должен быть прокален по режиму, указанному в табл. 4.3, после чего его можно использовать в течение 15 суток, если хранить в соответствии с требованиями, приведенными в п. 3.10. По истечении указанного срока флюс перед применением следует вновь прокалить.

4.4. Аргон, кислород, ацетилен и углекислый газ

- 4.4.1. В качестве защитного газа при ручной и автоматической аргонодуговой сварке неплавящимся электродом применяют аргон высшего и первого сортов с физико-химическими показателями по ГОСТ 10157. Допускается использовать газообразный и жидкий аргон.
- 4.4.2. Для газовой ацетиленокислородной сварки необходимо использовать газообразный кислород первого или второго сортов по ГОСТ 5583.

Области применения сварочной проволоки и флюсов

Группа ос- новных ма-	Сталь труб					
териалов по ПБ 03-164-97		тической аргоно- дуговой ной в уг- лекислом	механи- зирован- ной в уг- лекислом		тической элюсом	
				rase ¹	проволока	флюс
1	08, 10, 20, Ст2, Ст3, Ст4, Ст3Г, 15Л, 20Л, 25Л	Св-08ГА-2 ² , Св-08Г2С, Св-08ГС	CB-08, CB-08A, CB-08FA, CB-08FC, CB-08F2C, CB-08MX	Св-08Г2С	Св-08, Св-08А, Св-08АА, Св-08ГА	OCU-45, OCU-45M, AH-348A, AH-42, AH-42M, AHU-1, AH-348AM
,					Св-08ГА, Св-10НМА	AH-43 ²

Группа ос- новных ма-	Сталь труб	Марка проволоки (ГОСТ 2246) и флюсов для сварки				
териалов по ПБ 03-164-97		ручной и автома- тической аргоно- дуговой	газовой	механи- зирован- ной в уг- лекислом	автоматической под флюсом	
				rase ¹	проволока	флюс
	15ГС, 16ГС, 17ГС, 14ГН, 16ГН, 09Г2С, 10Г2С1, 14ХГС, 20ГСЛ, 17Г1С,	Св-08Г2С, Св-08ГС	Св-08ГС, Св-08Г2С	Св-08Г2С	Св-12ГС	ФЦ-11, ФЦ-16, ФЦ-22
	17Г1СУ				Св-10Г2	ФЦ-22
					Св-08ГА, Св-10ГА, Св-10Г2	OCU-45, OCU-45M, AH-348A, AH-42, AH-348AM, AH-42M, AHL-1

Сварка						Св-10НМА, Св-08ГСМТ	AH-43 ²
:	4	12MX, 15XM, 12X2M1, 20XMЛ	CB-08MX 3 , CB-08XMA-2 2 , CB-08XM 3 , CB-08XTCMA	Св-08МХ, Св-08ХМ, Св-08ХМФА	-	-	-
33		12Х1МФ	CB-08XMФA ³ , CB-08XMФA-2 ² , CB-08XГСМФА, CB-08XM ⁴ , CB-08XMA-2 ⁴ , CB-08MX ⁵ , CB-08XГСМА ⁴	Св-08МХ, Св-08ХМ, Св-08ХМФА	_	-	-
		15X1M1Ф, 20XMФЛ, 15X1M1ФЛ, 15X1M1Ф-ЦЛ, 12X2MФБ, 12X2MФСР	Св-08ХМФА-2 ² , Св-08ХМФА, Св-08ХГСМФА	-	-	-	-
	5	10Х9МФБ (ДИ 82-Ш)	Св-10Х9НМФА ² , Св-10Х9ГСНМФ ²	_		-	_

Группа ос- новных ма-	Сталь труб		Марка прово и флюсо	локи (ГОСТ в для сварк		
териалов по ПБ 03-164–97		ручной и автома- тической аргоно- дуговой	газовой	механи- зирован- ной в уг- лекислом		
				газе ¹	проволока	флюс
6	12Х11В2МФ	Св-10Х11НВМФ, Св-12Х11НМФ	-	-	-	
		Св-04Х19Н11М3, Св-08Х19Н10Г2Б, Св-04Х20Н10Г2Б ²				
9	12X18H12T, 12X18H10T	CB-04X19H11M3, CB-08X19H10Г2Б, CB-04X20H10Г2Б ² , CB-01X19H9, CB-04X19H9, CB-06X19H9T	_	-	-	-
	10Х13Г12БС2Н 2Д2 (ДИ 59)	Св-08Х19Н10Г2Б Св-04Х20Н10Г2Б ²				

¹В том числе с добавкой в углекислый газ до 25% аргона.

 $^{^2}$ Проволока марок Св-08ГА-2, Св-08ХМА-2, Св-08ХМФА-2 изготавливается по ТУ-14-1-4369-87; Св-10Х9НМФА, Св-10Х9ГСНМФ – по ТУ 14-130-275-95 с изм. 1; Св-04Х20Н10Г2Б – по ТУ 14-1-4591-89. Флюс АН-43 изготавливается по ТУ 14-1-2434.

 $^{^3}$ Проволоку марок Св-08МХ, Св-08ХМ и Св-08ХМФА допускается применять для аргонодуговой сварки только при содержании кремния в проволоке не менее 0,22%.

⁴Проволока марок Св-08ХГСМА, Св-08ХМ и Св-08ХМА-2 применяется для сварки стыков трубопроводов, работающих при температуре среды до 510 °C включительно, а также для сварки стыков труб поверхностей нагрева и корневого слоя стыков трубопроводов независимо от параметров рабочей среды.

⁵ Проволока марки Св-08МХ применяется для сварки корневого слоя стыков трубопроводов, работающих при температуре среды до 510 °C включительно, и для сварки стыков труб поверхностей нагрева независимо от параметров рабочей среды.

В качестве горючего газа следует применять растворенный и газообразный технический ацетилен по ГОСТ 5457, поставляемый потребителю в баллонах или получаемый из карбида кальция, отвечающего требованиям ГОСТ 1460.

4.4.3. Для механизированной сварки в углекислом газе в качестве защитного газа следует применять газообразный и жидкий углекислый газ высшего и первого сортов по ГОСТ 8050.

4.5. Вольфрамовые электроды для аргонодуговой сварки

- 4.5.1. Для ручной и автоматической сварки в среде аргона в качестве неплавящегося электрода следует применять вольфрамовые электроды из вольфрама марок ЭВЛ, ЭВИ-1, ЭВИ-2, ЭВИ-3, ЭВТ-15 по ГОСТ 23949, лантанированного вольфрама марки ВЛ по ТУ 48-19-27—87 или иттрированного вольфрама марки СВИ-1 по ТУ 48-19-221—83 диаметром 2—4 мм.
- 4.5.2. Для легкого возбуждения дуги и повышения стабильности ее горения конец вольфрамового электрода необходимо затачивать на конус; длина конической части должна составлять 6—10, а диаметр притупления 0,2—0,5 мм.

5. ПОДГОТОВКА ПРОИЗВОДСТВА

5.1. Требования к квалификации персонала

5.1.1. К сварочным работам при изготовлении, монтаже и ремонте элементов котлов и трубопроводов, на которые распространяется настоящий РД (см. п. 1.4), могут быть допущены сварщики, аттестованные на І уровень профессиональной подготовки в соответствии с ПБ 03-273—99 и имеющие аттестационное удостоверение, в котором указывается, к каким видам работ допущен сварщик (способ сварки, наименование изделий, группа сталей, положение шва в пространстве).

Квалификационный разряд присваивается сварщику в соответствии с «Единым тарифно-квалификационным справочни-ком работ и профессий рабочих», вып. 2, часть 1, М., 2000

(приложение к постановлению Министерства труда и социального развития Российской Федерации от 15.11.99 № 45) независимо от аттестации сварщика на Гуровень согласно Правилам ПБ 03-273–99.

Сварщики всех специальностей и квалификаций, кроме газосварщиков, должны иметь квалификационную группу по электробезопасности не ниже II. Кроме того, все сварщики должны сдать испытания на знание противопожарных мероприятий и требований по безопасности труда.

5.1.2. Сварщик, прошедший первичную аттестацию, получает аттестационное удостоверение на право производства сварочных работ на конкретных изделиях, подконтрольных Госгортехнадзору России, срок действия которого 2 года. Через 2 года (по истечении первого срока действия аттестационного удостоверения) срок действия удостоверения может быть продлен Аттестационным центром на основании ходатайства с места работы сварщика и положительного заключения медицинской комиссии; продление срока действия удостоверения может быть осуществлено на 1 год, но не более двух раз подряд.

После окончания срока действия аттестационного удостоверения (с учетом полученных продлений, если они были) сварщик подвергается *периодической* аттестации со сдачей специального и практического экзаменов.

Если у сварщика был перерыв свыше 6 месяцев в выполнении работ, указанных в его аттестационном удостоверении, или ему будут поручены работы, не указанные в его аттестационном удостоверении, он должен пройти дополнительную аттестацию путем сдачи специального и практического экзаменов.

Если сварщик был временно отстранен от работы за нарушение технологии сварки или повторяющееся неудовлетворительное качество выполненных им производственных сварных соединений, он должен быть подвергнут внеочередной аттестации со сдачей общего, специального и практического экзаменов.

Содержание и объем первичной, периодической, дополнительной и внеочередной аттестации определяются аттестационной комиссией в соответствии с требованиями ПБ 03-278–99.

5.1.3. Сварщик, впервые приступающий в данной организации к сварке труб котлов и трубопроводов, несмотря на наличие удостоверения, должен перед допуском к работе пройти проверку путем сварки и контроля допускных (пробных) стыков.

Конструкция допускного стыка должна соответствовать видам работ, указанным в удостоверении сварщика. Методы и объемы контроля допускных стыков труб котлов и трубопроводов пара и горячей воды должны отвечать соответствующим правилам Госгортехнадзора России. Допускные стыки газопроводов (СНиП 3.05.02—88*), тепловых сетей (СНиП 3.05.03—85), трубопроводов наружного водоснабжения и канализации (СНиП 3.05.04—85*) проверяются путем визуального и измерительного контроля, радиографирования и механических испытаний. Оценка качества допускных стыков должна производиться по нормам, которые предусмотрены для таких же производственных стыков (см. раздел 18).

Контроль допускных стыков путем ультразвуковой или радиографической дефектоскопии можно заменить осмотром наружной и внутренней поверхности шва и установлением сплошности металла шва в процессе послойной его проточки на токарном станке через каждые 0,5–1,0 мм.

Допускные стыки должны быть идентичны производственным стыкам, которые будет сваривать проверяемый сварщик, или однотипны с ними. Определение однотипности сварных соединений – см. приложение 10. По результатам проверки качества допускных стыков составляется протокол, являющийся основанием для допуска сварщика к выполнению сварочных работ.

5.1.4. К термообработке сварных соединений (включая предварительный и сопутствующий подогрев) трубопроводов и труб котлов электрическим или газопламенным способом нагрева допускаются операторы-термисты, прошедшие специальную подготовку, сдавшие соответствующие испытания и имеющие удостоверение на право производства указанных работ в монтажных и ремонтных условиях.

Операторы-термисты должны сдать испытания на знание противопожарных мероприятий и требований по безопасности труда, а операторы-термисты электронагрева, кроме того, должны сдать испытания не ниже чем на III квалификационную группу по электробезопасности. Операторы-термисты подвергаются ежегодной переаттестации, результаты которой должны быть оформлены протоколом и соответствующей записью в удостоверении.

Подготовку операторов-термистов предприятие — производитель работ осуществляет на специальных курсах или в учебных комбинатах (центрах) по программе, утвержденной вышестоящей организацией.

Аттестацию и переаттестацию операторов-термистов производит постоянно действующая комиссия предприятия, выполняющего работы по термообработке сварных соединений трубопроводов и оборудования, подконтрольных Госгортехнадзору России, назначенная из числа специалистов сварочного производства, аттестованных на II или III уровень профессиональной подготовки в соответствии с ПБ 03-273—99. В состав комиссии должны входить представители служб контроля, охраны труда и другие специалисты.

- 5.1.5. К контролю сварных соединений труб физическими методами (в том числе стилоскопирование швов и деталей) допускаются контролеры, аттестованные в соответствии с Правилами атестации специалистов неразрушающего контроля.
- 5.1.6. К руководству и техническому контролю за проведением сварочных работ должны быть допущены специалисты сварочного производства, аттестованные на II, III или IV уровень профессиональной подготовки в соответствии с действующими ПБ 03-273—99 и имеющие удостоверение НАКС на право руководства и технического контроля за производством сварочных работ на объектах Госгортехнадзора России в энергетической отрасли в соответствии с данными, указанными в их удостоверении.

Специалисты сварочного производства подвергаются проверке знаний в области промышленной безопасности в соот-

ветствии с Положением о порядке подготовки и аттестации работников организаций, эксплуатирующих опасные производственные объекты, подконтрольные Госгортехнадзору России (РД 04-265–99).

5.2. Проверка состояния оборудования для сварки, термообработки и дефектоскопии

- 5.2.1. Оборудование для сварки и термообработки, аппаратура для дефектоскопии, контрольно-измерительные приборы (амперметры, вольтметры и др.) должны иметь паспорт завода-изготовителя, подтверждающий пригодность данного экземпляра оборудования для предназначенной работы.
- 5.2.2. Оборудование перед использованием должно быть проконтролировано на: наличие паспорта завода-изготовителя; комплектность и исправность; действие срока последней проверки и госповерки (для аппаратуры и приборов, подлежащих госповерке).
- 5.2.3. На каждом предприятии (заводе, монтажном участке или площадке, ремонтной организации) должны быть составлены графики осмотров, проверок, профилактических (текущих) и капитальных ремонтов оборудования, поверок средств измерений, утвержденные главным инженером. В графиках, помимо сроков (дат) контроля, указываются фамилии лиц, ответственных за проведение этих операций.

Периодичность осмотров, проверок, ремонтов должна соответствовать требованиям паспортов или других документов. Основные требования к организации и порядку проведения поверки средств измерений должны соответствовать ГОСТ 8.513 и ГОСТ 8.326.

Сварочное оборудование должно подвергаться еженедельному осмотру (а сварочные автоматы и полуавтоматы ежедневному осмотру перед началом работы) на предмет определения видимых неисправностей. Для сварочного оборудования может быть принята периодичность ремонта, указанная в табл. 5.1.

Периодичность ремонта сварочного оборудования

Оборудование и его ремонт		Межремонт- ный пе-		
	текущий	средний	капитальный	риод, мес
Сварочные трансформаторы	2	2	1 раз в 4 года	3
Сварочные пре- образователи	4	2	1 раз в 2 года	2
Сварочные выпрямители	2	2	1 раз в 4 года	3
Сварочные автоматы и полуавтоматы	4	3	1 раз в 2 года	2
Характеристика ремонта свароч- ного оборудова- ния	Тщательный осмотр без разборки. Замена или восстановление отдельных изношенных деталей	Тщательный осмотр оборудования с частичной разборкой. Замена, восстановление, чистка изношенных и неисправных деталей, механизмов и электрических устройств	Полная разборка оборудования. Проверка размеров. Замена или восстановление всех изношенных и неисправных деталей механизмов и электрических устройств. Восстановление первоначальных технических данных оборудования	

- 5.2.4. Все вновь полученные и отремонтированные аппараты для дефектоскопии и контрольно-измерительные приборы подлежат настройке и проверке правильности их показаний. Результаты проверки, а также данные о характере ремонта должны быть зафиксированы в паспорте (формуляре) дефектоскопа или журнале учета состояния оборудования.
- 5.2.5. Сварочные установки (источники питания, автоматы, полуавтоматы) должны быть снабжены исправной контрольноизмерительной аппаратурой или другими устройствами, предусмотренными конструкцией данной установки. Для периодического контроля сварочного тока можно пользоваться переносным амперметром.
- 5.2.6. На каждом предприятии (организации) необходимо вести журнал учета состояния оборудования, в котором следует фиксировать ремонт и проверки оборудования.

5.3. Входной контроль основных материалов

- 5.3.1. Входной контроль металла (труб, листов, профильного проката), конструктивных элементов котлов и трубопроводов, поступающих на предприятие для изготовления, монтажа или ремонта энергетического объекта, включает следующие контрольные операции:
- а) проверку наличия сертификата или паспорта, полноты приведенных в нем данных и соответствия этих данных требованиям стандарта, технических условий или конструкторской документации;
- б) проверку наличия маркировки и соответствия ее сертификатным или паспортным данным;
- в) осмотр металла и конструктивных элементов для выявления поверхностных дефектов и повреждений.
- 5.3.2. При отсутствии сертификата или неполноте сертификатных данных применение этого металла может быть допущено только после проведения испытаний, подтверждающих соответствие металла всем требованиям стандарта или технических условий.

- 5.3.3. Конструктивные элементы котлов и трубопроводов, не имеющие заводского паспорта (сертификата), не могут быть допущены для дальнейшего производства (монтажа, ремонта, укрупнения).
- 5.3.4. Входной контроль основных материалов (металла и конструктивных элементов) осуществляет в соответствии с ГОСТ 24297 организация заказчик этих материалов. Результаты входного контроля должны быть переданы монтажной (ремонтной) организации.

5.4. Входной контроль сварочных материалов и материалов для дефектоскопии

- 5.4.1. Перед использованием сварочных материалов (электродов, сварочной проволоки, флюса и др.) должны быть проверены:
- а) наличие сертификата (на электроды, проволоку и флюс), полнота приведенных в нем данных и их соответствие требованиям стандарта, технических условий или паспорта на конкретные сварочные материалы;
- б) наличие на каждом упаковочном месте (пачке, коробке, ящике, мотке, бухте и пр.) соответствующих этикеток (ярлыков) или бирок с проверкой полноты указанных в них данных;
 - в) сохранность упаковок и самих материалов;
- г) для баллонов с газом наличие документа, регламентированного стандартом на соответствующий газ.
- 5.4.2. При отсутствии сертификата или неполноте сертификатных сведений сварочный материал данной партии может быть допущен к использованию после проведения испытаний и получения положительных результатов по всем показателям, установленным соответствующим нормативным техническим документом стандартами (техническими условиями) или паспортом на данный вид материала.

В случае расхождения сертификатных данных с требованиями соответствующего НТД партия сварочных материалов к использованию не допускается.

- 5.4.3. При обнаружении повреждения или порчи упаковки или самих материалов вопрос о возможности использования этих материалов решает руководитель сварочных работ совместно с ОТК (СТК) предприятия (организации).
- 5.4.4. Каждая часть сварочной проволоки, отделенная от бухты (мотка), должна быть снабжена биркой, на которой указываются марка, номер плавки и диаметр проволоки.

Контроль электродов для ручной дуговой сварки

- 5.4.5. Перед применением каждой партии электродов независимо от наличия сертификата должны быть проконтролированы:
 - а) сварочно-технологические свойства;
- б) соответствие наплавленного металла легированных электродов требованиям марочного состава.

Результаты проверки электродов должны быть оформлены соответствующим актом (см. раздел 21).

Перед выдачей электродов сварщику необходимо убедиться в том, что они были прокалены и срок действия прокалки не истек.

Примечание. При наличии на этикетках пачек номеров замесов электродов (в пределах одной партии) рекомендуется проводить указанный в п. 5.4.5 контроль каждого замеса.

5.4.6. Сварочно-технологические свойства электродов, предназначенных для сварки трубопроводов из углеродистых и низколегированных сталей, в том числе для приварки труб (штуцеров) к коллекторам или трубопроводам, необходимо определять при сварке в потолочном положении одностороннего таврового образца из двух погонов, вырезанных из труб, или двух пластин размером 180×140 мм (рис. 5.1). Сварку погонов выполняют в один слой.

Технологические свойства электродов можно проверить также при сварке потолочного участка или всего вертикального стыка труб диаметром 133—159 мм с толщиной стенки 10—18 мм из соответствующей стали.

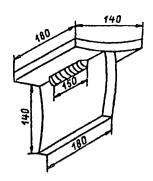


Рис. 5.1. Схема сварки таврового соединения пластин (погонов из труб) для определения технологических свойств электродов

Сварку нужно производить с подогревом, если он предусмотрен для данного сварного соединения технологической документацией.

После сварки таврового образца шов и излом по шву осматривают. Для облегчения разрушения образца следует сделать надрез по середине шва со стороны выпуклости шва глубиной 1,5–2,0 мм.

После сварки стыка труб шов протачивают на токарном станке со снятием слоя толщиной до 0,5 мм или подвергают радиографическому контролю для определения сплошности металла.

5.4.7. Толщину пластин (погонов) и катет шва при сварке тавровых образцов выбирают в зависимости от диаметра электрода:

Диаметр электрода, мм	До 2 вклю- чительно	Свыше 2 до 3 включи- тельно	Свыше 3 до 4 включи- тельно	Свыше 4
Толщина пластины, мм	3–5	6–10	10–16	14–20
Катет шва, мм	2–3	4–5	6–8	8–10

- 5.4.8. Пластины и погоны из труб для проверки технологических свойств электродов должны быть изготовлены из стали той марки, для сварки которой могут быть использованы проверяемые электроды в соответствии с данными табл. 4.1 или 4.2.
- 5.4.9. Сварочно-технологические свойства электродов, предназначенных для сварки труб поверхностей нагрева котлов, необходимо проверить путем сварки не менее трех пробных неповоротных стыков труб из сталей соответствующих марок с последующим контролем сплошности шва с помощью радиографии или проточки стыков на токарном станке со снятием слоя не более 0,5 мм для определения сплошности металла шва.
- 5.4.10. Сплошность металла шва, определяемая согласно пп. 5.4.6 и 5.4.9, должна отвечать требованиям, приведенным в табл. 5 ГОСТ 9466 (с изменением № 1).
- 5.4.11. Сварочно-технологические свойства электродов должны удовлетворять требованиям ГОСТ 9466. Основные из этих требований следующие:

дуга легко зажигается и стабильно горит:

покрытие плавится равномерно без чрезмерного разбрызгивания, отваливания кусков и образования «козырька», препятствующих нормальному плавлению электрода во всех пространственных положениях;

образующийся при сварке шлак обеспечивает правильное формирование шва и легко удаляется после охлаждения;

в металле шва (наплавленном металле) нет трещин.

Образование «козырька» из покрытия размером более 3 мм и отваливание кусков нерасплавившегося покрытия от стержня являются браковочными признаками.

Для определения размера «козырька» и прочности покрытия отбирается 10—12 электродов из 5—6 пачек и производится их расплавление в вертикальном положении с углом наклона электрода к шву 50—60°. Размер «козырька» измеряется от торца стержня электрода до наиболее удаленной части оплавившегося покрытия.

- 5.4.12. При неудовлетворительных сварочно-технологических свойствах электродов они должны быть повторно прокалены. Если после этого при проверке сварочно-технологических свойств получены неудовлетворительные результаты, то данная партия электродов бракуется, на нее оформляется актрекламация, который направляется заводу-изготовителю и в свою вышестоящую организацию.
- 5.4.13. Для проверки соответствия легированных электродов марочному составу на малоуглеродистую пластинку наплавляют три бобышки высотой и диаметром у основания, равными не менее чем четырем диаметрам контролируемого
 электрода. Из разных пачек замеса берут три электрода, при
 этом каждую бобышку наплавляют одним электродом. Верхнюю площадку бобышки зачищают до металлического блеска
 и стилоскопированием определяют содержание элементов, входящих в марочный состав (см. подраздел 18.2). Если при проверке выявлено несоответствие наплавленного металла марочному составу (хотя бы одного из трех испытанных электродов),
 замес должен быть подвергнут повторному стилоскопированию.
 При повторном контроле проверяют по 10 электродов каждого
 замеса, результаты испытаний которых были неудовлетворительными.

Все электроды необходимо отбирать из разных пачек каждого замеса. После повторного стилоскопирования бракуют электроды только тех замесов, на которых получены неудовлетворительные результаты. Если при проверке в отдельных замесах встречаются удовлетворительные и неудовлетворительные результаты, бракуют всю контролируемую партию электродов.

Стилоскопический контроль может быть заменен количественным химическим или спектральным анализом верхней части наплавки.

5.4.14. При неполноте данных в сертификате или сомнении в качестве электродов, помимо проверки сварочно-технологических свойств, определяют химический состав и (или) меха-

нические свойства наплавленного металла (металла шва) партии электродов.

Для этого необходимо сварить встык две пластины (или два погона) размером 350×110 мм, толщиной 12–18 мм из соответствующей стали; погоны вырезают из трубы диаметром более 150 мм.

Механические свойства и химический состав наплавленного металла электродов типов Э-09X1М и Э-09X1МФ можно также определять на пластинах из углеродистой стали толщиной 12—18 мм, предварительно наплавив испытуемыми электродами на свариваемые кромки три слоя общей толщиной не менее 10 мм. Чтобы изготовить образцы для механических испытаний наплавленного металла аустенитными электродами, следует сварить встык две пластины (или два погона), вырезанные из листов (или труб) той стали, для сварки которой они предназначены. Пластины сваривают по технологии, рекомендованной для данной стали настоящим РД.

Из сварного соединения (рис. 5.2) необходимо изготовить согласно ГОСТ 6996 три образца для испытания на ударный изгиб и три – для испытания на растяжение, чтобы определить временное сопротивление и относительное удлинение.

Для проверки химического состава из наплавленного металла должно быть набрано 30–40 г стружки.

Заготовки образцов наплавленного металла углеродистых и низколегированных электродов для испытаний на ударный изгиб и растяжение можно вырезать с помощью ацетиленокислородной резки с припуском не менее 4 мм на последующую чистовую механическую обработку. Заготовки образцов наплавленного металла аустенитных электродов необходимо вырезать только механическим способом.

Химический состав наплавленного металла электродов должен соответствовать указанному в приложении 7 или 8.

Механические свойства наплавленного металла определяют на образцах, прошедших термообработку по режимам, указанным в приложении 7 или 8.

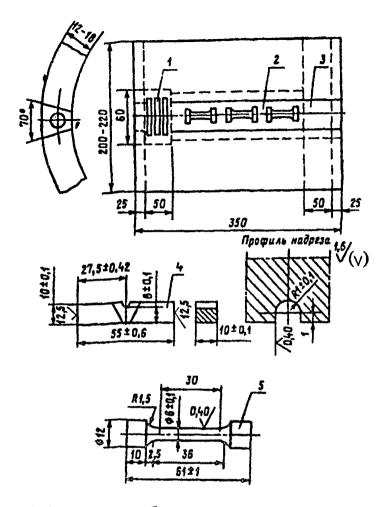


Рис. 5.2. Схема вырезки образцов для испытания металла шва: 1 – заготовка под образцы для испытания на ударный изгиб; 2 – заготовка под образцы для испытания на растяжение; 3 – заготовка под пробы для химического анализа; 4 – образец для испытания на ударный изгиб (тип VI по ГОСТ 6996); 5 – образец для испытания на растяжение (тип II)

5.4.15. Механические свойства наплавленного металла определяют как среднее арифметическое из данных, полученных при испытании образцов. Значения должны быть не менее

указанных в приложении 7 или 8. Испытания считают удовлетворительными, если их результаты на одном из образцов не более чем на 10% ниже требований, указанных в приложении 7 или 8, а для ударной вязкости — не более чем на 20 Дж/см² (2 кгс • м/см²) ниже установленных норм при условии, что средний арифметический показатель соответствует нормативным требованиям.

5.4.16. При неудовлетворительных результатах какого-либо вида механических испытаний, а также при несоответствии химического состава наплавленного металла значениям, приведенным в приложении 7 или 8, разрешаются повторные испытания на удвоенном количестве образцов.

Повторно проводят тот вид механических испытаний, по которому получены неудовлетворительные результаты.

При повторном химическом анализе определяют содержание тех элементов, которые по результатам первого анализа не удовлетворяют требованиям, указанным в приложении 7 или 8.

При неудовлетворительных результатах повторных испытаний даже по одному из видов испытаний партия электродов бракуется и не может быть использована для сварки изделий, на которые распространяется настоящий РД.

Контроль сварочной проволоки

- 5.4.17. Каждая партия сварочной проволоки перед выдачей на производственный участок должна быть проконтролирована путем осмотра поверхности проволоки в каждой бухте (мотке, катушке). На поверхности проволоки не должно быть окалины, ржавчины, следов смазки, задиров, вмятин и других дефектов и загрязнений.
- 5.4.18. Каждая бухта (моток, катушка) легированной проволоки сплошного сечения перед сваркой (независимо от способа сварки) должна быть проверена стилоскопированием на соответствие содержания основных легирующих элементов требованиям, приведенным в приложении 9. Стилоскопированию подвергают концы каждой бухты (мотка, катушки). При неудовлетворительных результатах стилоскопирования бухта не

может быть использована для сварки до установления точного химического состава проволоки количественным химическим анализом.

- 5.4.19. Каждая партия сварочной проволоки сплошного сечения, предназначенная для сварки под флюсом изделий, на которые распространяются правила Госгортехнадзора России, должна быть проверена на механические свойства металла шва в сочетании с флюсом той партии, которая будет использоваться в производстве с проволокой данной партии. Для этого сваривают встык две пластины и из этого сварного соединения изготавливают три образца для испытания на ударный изгиб и два для испытания на растяжение, чтобы определить временное сопротивление и относительное удлинение (см. рис. 5.2). Испытание проводится при температуре +20 °C. Результаты испытаний считаются удовлетворительными, если временное сопротивление разрыву будет не ниже минимально допустимого для основного металла, который будет свариваться этими сварочными материалами, относительное удлинение - не менее 16%, ударная вязкость - не менее 49 Дж/см² (5 кгс • м/см²).
- 5.4.20. Каждая партия порошковой проволоки перед применением должна быть подвергнута проверке сварочно-технологических свойств путем наплавки валика на пластину и визуального контроля с помощью лупы пятикратного увеличения, чтобы выявить трещины, поры и неровности на поверхности валика. Валик наплавляется на пластину толщиной 14—18 мм из углеродистой стали (марок Ст3пс; Ст3сп; 20) в нижнем положении по режиму, предписанному для данной марки проволоки. Сварочно-технологические свойства считаются удовлетворительными, если на поверхности валика не обнаружено трещин, максимальный размер пор не более 1,2 мм и их число на любых 100 мм протяженности валика не более пяти; углубление между чешуйками должно быть не более 1,5 мм.

Контроль флюса

5.4.21. Перед выдачей флюса для сварки необходимо убедиться в том, что он был подвергнут в соответствии с требо-

ваниями п. 4.3.3 прокалке, срок действия которой не истек, а также проверке в соответствии с п. 5.4.19.

Контроль защитного газа

5.4.22. Перед использованием газа из каждого баллона следует проверить качество газа, для чего надо наплавить на пластину или трубу валик длиной 100—150 мм и по внешнему виду поверхности наплавки определить ее качество. При обнаружении пор в металле шва газ, находящийся в данном баллоне, бракуют.

Контроль материалов для дефектоскопии

5.4.23. Каждая партия материалов для дефектоскопии (реактивов для травления, радиографической пленки, усиливающих экранов, фотореактивов и др.) перед использованием должна быть проконтролирована на:

наличие на каждом упаковочном месте (пачке, коробке, емкости и др.) этикеток с проведением проверки полноты приведенных в них данных и соответствия этих данных требованиям соответствующих ГОСТ, ТУ и инструкций;

отсутствие повреждения и порчи упаковки или самих материалов;

действие срока годности, указанного в сопроводительной документации;

соответствие качества материалов требованиям методических документов на данный вид контроля.

5.4.24. При неудовлетворительных результатах контроля данная партия материала для дефектоскопии бракуется (полностью или частично).

Примечание. По истечении срока годности материалов для радиографирования их использование допускается только после проведения испытаний, подтверждающих их пригодность в соответствии с требованиями настоящего РД. Испытания проводятся не менее чем на четырех контрольных образцах. Результаты таких испытаний действительны 6 месяцев.

6. ОБЩИЕ ПОЛОЖЕНИЯ ТЕХНОЛОГИИ СБОРКИ И СВАРКИ СТЫКОВ ТРУБ

6.1. Подготовка деталей к сварке

- 6.1.1. На всех поступающих на монтажную площадку блоках, трубах и деталях до начала сборки мастером (или другим ответственным лицом) должно быть проверено наличие клейм, маркировки, а также сертификатов завода-изготовителя, подтверждающих соответствие блоков, труб и деталей их назначению. При отсутствии клейм, маркировки или сертификатов блоки, трубы и детали к дальнейшей обработке не допускаются.
- 6.1.2. При подготовке стыковых соединений труб для сварки необходимо проверить их соответствие чертежам и требованиям НТД. Отклонение плоскости реза от угольника (размер «е» на рис. 6.1) должно быть не выше следующих значений (по ОСТ 24.125.60–89 и ОСТ 108.030.40–79):

Бесшовные трубы

Номинальный наружный диаметр трубы, штуцера или патрубка, мм	До 76 включи- тельно	77– 133	134- 245	246– 325	326- 630	631– 720	Более 720
Допускаемый перекос плоскости «е», мм	0,5	1,0	2,0	2,5	3,0	4,0	5,0
	Элект	гросва	рные т	рубы			
Номинальный наружный диа- метр трубы, штуцера или патрубка, мм	От 50	30 до 6	330		Бол	ee 630	
Допускаемый перекос плоско- сти «е», мм		5,0			1	6,0	

Следует также проверить:

соответствие формы, размеров и качества подготовки кромок (в том числе расточки под заданный внутренний диаметр,

разделки для угловых и тавровых соединений) предъявляемым требованиям (обработку фасок под сварку и размеры кромок проверяют специальными шаблонами);

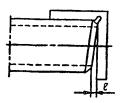


Рис. 6.1. Схема проверки перпендикулярности торцов труб

качество зачистки наружной и внутренней поверхностей концов труб (патрубков, штуцеров), а также их поверхностей в местах угловых и тавровых соединений;

правильность выполнения переходов от одного сечения к другому (на концах труб, патрубков и штуцеров, подлежащих сварке с элементами других типоразмеров);

соответствие минимальной фактической толщины стенки подготовленных под сварку концов труб (патрубков, деталей, штуцеров) установленным допускам (после расточки под подкладное кольцо или под заданный внутренний диаметр, зачистки наружной и внутренней поверхностей и после калибровки).

6.1.3. При обработке концов труб длина цилиндрической расточки / под подкладное кольцо (рис. 6.2) должна быть (мм):

S	До 5	Свыше 5 до 25 включительно	Свыше 25
1	40	50	1,6 <i>S</i> + 10

Переход от проточенного участка к необработанной поверхности трубы должен быть плавным с углом выхода резца (значение угла β – см. п. 6.1.6, б). Расточку можно не производить,

если внутренние диаметры стыкуемых труб позволяют собрать стык в соответствии с требованиями п. 6.2.5.

6.1.4. Обработку кромок труб под сварку следует производить механическим способом (резцом, фрезой или абразивным кругом) с помощью труборезного станка либо шлифмашинки. Шероховатость поверхности кромок труб, подготовленных для сварки, не должна превышать норм, приведенных на рис. 6.2.

Концы труб из углеродистых и низколегированных сталей разрешается обрабатывать кислородной, плазменнодуговой или воздушно-дуговой резкой с последующей зачисткой кромок режущим или абразивным инструментом до удаления следов огневой резки. Подготовленные к сборке кромки должны быть без вырывов, заусенцев, резких переходов и острых углов.

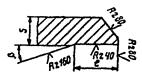


Рис. 6.2. Конструктивные размеры кромки трубы, обработанной под подкладное кольцо

Трубы из высоколегированных сталей (мартенситного, мартенситно-ферритного и аустенитного классов) можно обрезать механическим способом, а также плазменно-дуговой, газофлюсовой или воздушно-дуговой резкой. При огневой резке этих сталей должен быть предусмотрен припуск не менее 1 мм на последующую механическую обработку.

Фаски на трубах из углеродистых и низколегированных сталей под ручную или автоматическую аргонодуговую сварку стыков без подкладных колец, а также на трубах из высоколегированных сталей независимо от способа сварки необходимо снимать только механическим способом.

Все местные уступы и неровности, имеющиеся на кромках собираемых труб и препятствующие их соединению в соответ-

ствии с требованиями чертежей или настоящего РД, следует до сборки устранить с помощью абразивного круга или напильника, не допуская острых углов и резких переходов.

При резке труб наружным диаметром более 76 мм на оставшейся ее части (которая в данный момент не идет в работу) должна быть сохранена маркировка завода-изготовителя или нанесены вновь несмываемой краской марка стали, номер плавки и размер трубы.

- 6.1.5. Кислородную резку труб из хромомолибденовых и хромомолибденованадиевых сталей со стенкой толщиной более 12 мм при температуре окружающего воздуха ниже 0 °C нужно производить с предварительным подогревом до 200 °C и медленным охлаждением под слоем асбеста.
- 6.1.6. Если разность внутренних диаметров стыкуемых труб превышает допустимую*, для обеспечения плавного перехода в месте стыка может быть применен один из следующих способов:
- а) раздача (без нагрева или с нагревом) конца трубы с меньшим внутренним диаметром (рис. 6.3, а). Области применения этого способа и допустимое значение раздачи приведены в табл. 6.1. После раздачи необходимо проверить соответствие толщины стенки трубы минимально допустимому расчетному значению;
- б) механическая обработка (расточка) по внутренней поверхности конца трубы с меньшим диаметром в соответствии с рис. 6.3, δ (для стыка без подкладного кольца) или 6.3, ϵ (для стыка с остающимся подкладным кольцом) при условии, что толщина стенки трубы после расточки будет не меньше расчетной. Этот способ можно применять для труб из любой стали. Угол выхода резца β должен быть не более 6° на трубах из аустенитной стали и не более 15° из других сталей;
- в) наплавка на внутреннюю поверхность трубы, имеющей больший внутренний диаметр, слоя металла с последующей

^{*} Допустимая разность внутренних диаметров стыкуемых элементов приведена в п. 6.2.5.

его обработкой резцом или абразивным камнем для снятия неровностей и обеспечения плавного перехода к поверхности труб (рис. 6.3, *a*). Такой способ можно применять для труб диаметром 159 мм и более из углеродистых и низколегированных сталей перлитного класса.

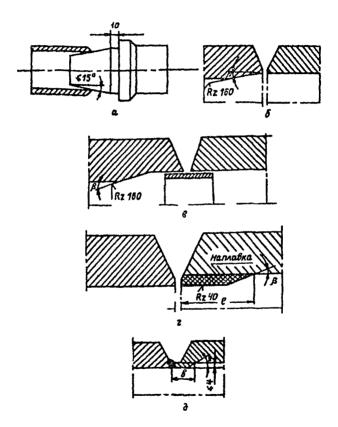


Рис. 6.3. Способы обработки концов труб при стыковке элементов, имеющих разные внутренние диаметры

Способы раздачи концов труб

Сталь	Способ раздачи*	Диаметр трубы, мм, не более	Толщина стенки трубы, мм, не более	Раздача А**, %, не более
Углеро-	Вхолодную	83	6	6
дистая		84–200	8	4
	С нагревом	300	20	10
Низколеги- рованная:				
теплоус- тойчивая	Вхолодную	100	8	4
	С нагревом	100	8	10
конструк- ционная	Вхолодную	200	8	4
	С нагревом	300	20	10
Аустенит-	Вхолодную	83	6	6
ная	Вхолодную	84–100	10	4
Мартенсит- но-феррит- ная и мар- тенситная	Вхолодную	100	6	4

^{*} Раздачу с нагревом следует производить при температуре концов трубы 900–1000 °C из низколегированных теплоустойчивых сталей, при 700–900 °C – из низколегированных конструкционных и углеродистых сталей.

После механической обработки длина наплавки *l* должна быть не менее:

^{**} Подсчитывают по формуле $A = (\mathcal{I}_2 - \mathcal{I}_1)$ • 100/ \mathcal{I}_1 , где \mathcal{I}_1 и \mathcal{I}_2 – внутренний диаметр трубы соответственно до и после раздачи.

Диаметр трубы, мм	l, mm
До 219	20
Свыше 219 до 273	30
Более 273	50

Толщина наплавки должна быть не более 6 мм. Наплавку можно выполнять ручной дуговой или ручной аргонодуговой сваркой неплавящимся электродом с использованием присадочных материалов, которые применяют для сварки стыка, при режиме подогрева и охлаждения, предусмотренном для данных стыков. Наплавку следует производить кольцевыми (спиральными) валиками в направлении изнутри трубы к ее торцу. Термообработку места наплавки перед сваркой стыка не проводят;

г) приварка впритык к элементу (трубе, патрубку, тройнику, арматуре) с меньшим внутренним диаметром кольца шириной b=18—20 мм и наружным диаметром, равным внутреннему диаметру другого стыкуемого элемента (рис. 6.3, \eth).

При сборке стыка элемент с большим внутренним диаметром надвигается на приваренное кольцо с соблюдением требований к сборке и сварке как к обычному стыку с подкладным кольцом. Такой способ может быть применен к трубопроводам из углеродистой и низколегированной конструкционной стали при разности внутренних диаметров стыкуемых элементов не более 8 мм.

6.1.7. При соосной стыковке труб с различными наружными диаметрами размер *h* (рис. 6.4) должен быть не более:

для труб из углеродистой и низколегированной сталей — 30% толщины более тонкой трубы, но не более 5 мм;

для труб из стали аустенитного, мартенситного и мартенситно-ферритного классов при номинальной толщине стенки 10 мм и менее — 15% толщины более тонкой трубы.

В обоих случаях плавный переход от одной детали к другой со стороны раскрытия шва должен быть обеспечен за счет наклонного расположения поверхности шва.

Когда смещение (несовпадение) стыкуемых труб по наружной поверхности из-за разности наружных диаметров превышает указанное, конец трубы с большим наружным диаметром должен быть обработан механическим способом (обточкой) согласно одному из эскизов рис. 6.4.

6.1.8. Вмятины на концах труб следует исправлять с помощью домкратов или других разжимных устройств при условии, что глубина вмятины не превышает 3,5% наружного диаметра трубы (\mathcal{L}_{H}), а толщина стенки для труб из углеродистых и низколегированных сталей не более 20, из аустенитных — 10, из мартенситных и мартенситно-ферритных — 6 мм.

Вмятины на трубах из углеродистых и низколегированных сталей допускается исправлять вхолодную или с нагревом (табл. 6,1), из аустенитных, мартенситных и мартенситно-ферритных – только вхолодную.

Концы труб с вмятинами глубиной более 3,5% \mathcal{L}_H , а также с забоинами и задирами глубиной более 5 мм следует обрезать или исправлять путем наплавки.

- 6.1.9. Кромки литых, кованых, штампованных, штампосварных деталей должны быть обработаны под сварку на заводе-изготовителе. В случае необходимости обработки таких деталей в условиях монтажа или ремонта она должна производиться по заводским нормалям либо в соответствии с требованиями п. 6.1.6, б, в или п. 6.1.7 по согласованию с заказчиком (владельцем оборудования).
- 6.1.10. В монтажных и ремонтных условиях допускается исправлять гибы путем подгибки или отгибки, если:

на трубах наружным диаметром не более 108 мм из углеродистых и низколегированных конструкционных сталей угол подгибки или отгибки не превышает 15°, из хромомолибденовых и хромомолибденованадиевых сталей – 10°;

на трубах наружным диаметром более 108 мм угол подгибки или отгибки не превышает 10° и 5° соответственно.

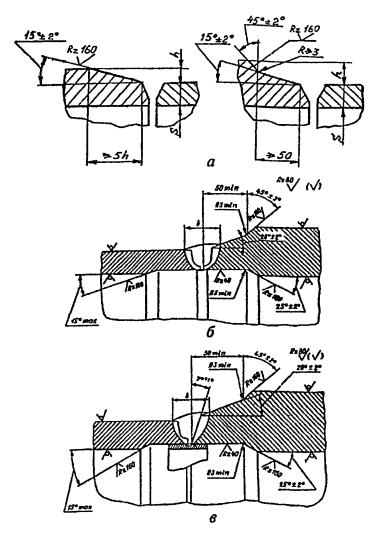


Рис. 6.4. Схема обработки концов труб при стыковке элементов, имеющих разные наружные диаметры: а – соединения трубы с трубой; б – соединения трубы с литыми, коваными и штампосварными деталями и арматурой; в – соединения трубы с арматурой, фасонными и трубными деталями с комбинированной разделкой кромок

Трубы из хромомолибденовых и хромомолибденованадиевых сталей независимо от толщины стенки при подгибке следует подогревать в месте подгибки до 710–740 °С. Трубы из низколегированных конструкционных и углеродистых сталей можно подгибать в холодном состоянии при толщине стенки до 20 мм, при большей толщине — с подогревом до 650– 680 °С. После подгибки нагретый участок необходимо обернуть асбестом. Место подгибки должно находиться вне гиба трубы; при ее диаметре более 100 мм место подгибки должно быть на расстоянии не менее 200 мм от гиба.

Температуру контролируют с помощью термокарандаша, термоэлектрического преобразователя (ТП) или термокраски. Термообработка места подгибки не требуется.

- 6.1.11. Подгибка и отгибка труб из сталей аустенитного класса диаметром менее 100 мм при толщине стенки не более 10 мм может быть допущена в монтажных условиях на угол не более 10° и должна осуществляться в холодном состоянии без последующей термообработки.
- 6.1.12. Подгибку труб из стали мартенситного и мартенситноферритного класса в условиях монтажа можно производить в холодном состоянии, угол подгибки должен быть не более 10°.

6.2. Сборка стыков труб

6.2.1. Конструкции сварных соединений должны быть указаны в проектно-конструкторской документации.

Основные рекомендуемые конструкции стыков сварных соединений даны в табл. 6.2. Допускается применение сварных соединений с другими конструктивными размерами подготовки кромок, если при этом обеспечивается надлежащее качество соединения.

6.2.2. При сборке стыков труб под сварку следует пользоваться центровочными приспособлениями, предпочтительно инвентарными, непривариваемыми к трубам. Рекомендуются приспособления, приведенные в приложении 11.

Тип раз-	Конструктивные элементы подготовленных	Способ сварки	Конструктивные размеры				Наружный диаметр
делки	кромок свариваемых деталей		S,	<i>а</i> , мм	<i>b</i> , mm	α, град.	трубы, <i>Д</i> н, мм
Tp-1		РАД Г ААД РД АФ	1–3 1–3 ≤4 2–3 4–8	$\leq 0,3(1^{\pm 0,5})$ $1^{\pm 0,5}$ $\leq 0,3$ $1^{\pm 0,5}$ $1,5^{+0,5}$	11111		≤100 ≤100 ≤159 ≤159 ≥ 200
Tp-2	۲۵	РД, МП РД,МП АФ	3–5 6–14 15–25	1 ^{+0,5} 1,5 ^{±0,5} 2 ^{+0,5}	1 ^{±0,5}	30 ^{±3} (25–45)	РД, МП – независимо, АФ – более 200
		К(РАД), К(ААД)	4–25	$\leq 0,5(1,5^{\pm 0.5})$	}	:	≥ 32
	a	РАД, ААД	2–10	$\leq 0,5(1,5^{\pm 0,5})$ $1,5^{\pm 0,5}$			≤630
l	,,	۲,	3–8	1,5 ^{±0,5}			≤159

Тип раз-	Конструктивные элементы подготовленных	Конструктивные размеры				Наружный диаметр	
делки	кромок свариваемых деталей		S, MM	а, мм	<i>b</i> , мм	α, градусы	трубы, <i>Д</i> н, мм
Tp-3		РД	≥ 16	По п. 6.2.9		15 ^{±2}	> 100
Тр-За		РД	≥ 16	По п. 6.2.9		7 ⁺¹	> 100
Тр-Зб		АФ	4–5 > 5	4 ⁺¹ 6 ⁺¹	-	12 ⁺² 12 ⁺²	> 200 > 200
Тр-Зв	"	МП	≥ 10	8 ⁺¹	_	15 ^{±2}	≥ 133
Тр-Зг	auo.	РД	≥5	По п. 6.2.9		30 ^{±3}	> 100
Тр-Зд		МП	≥5	8 ⁺¹		(25–45)	
Tp-6	45°	МП, К(РАД), К(ААД)	≥ 16 ≥ 10	$2^{\pm 0,5} \le 0,5(1,5^{\pm 0,5})$	1,5 ^{+0,5}	10 ^{±2} 10 ^{±2}	≥ 133 ≥ 133

64

Примечания.

- 1. В таблице приняты следующие условные обозначения способов сварки: РД ручная дуговая покрытыми электродами; РАД ручная аргонодуговая неплавящимся электродом; ААД автоматическая аргонодуговая неплавящимся электродом; АФ автоматическая под флюсом; МП механизированная в углекислом газе; Г газовая; К(РАД) комбинированная: корень ручная аргонодуговая, остальное ручная дуговая или механизированная в углекислом газе; К(ААД) комбинированная: корень автоматическая аргонодуговая, остальное ручная дуговая или механизированная в углекислом газе.
- 2. Зазор «а» для способов сварки РАД, ААД, К(РАД), К(ААД) указан без скобок в случае выполнения корневого слоя шва (первого прохода) без присадочной проволоки, в скобках с присадочной проволокой.
- 3. В седьмой графе в скобках приведены допустимые пределы угла скоса кромок « α », отличного от оптимального из-за неточности обработки или из-за изготовления труб по другим стандартам или техническим условиям.

При сборке стыков труб из хромомолибденовых и хромомолибденованадиевых сталей с помощью уголков (см. рис.П.11.1 приложения 11) приварка этих элементов к трубам должна производиться электродами типа Э42А или Э50А с предварительным подогревом места приварки согласно данным табл. 6.3. Уголки могут быть удалены (механическим путем или газовой резкой) после наложения не менее трех первых слоев стыкового шва. Места приварки этих деталей к трубам должны быть зачищены и тщательно осмотрены для выявления поверхностных трещин. В случае обнаружения дефекта это место должно быть выбрано с помощью абразивного инструмента. Если после выборки дефекта толщина трубы будет меньше допустимой расчетной, производится наплавка в соответствии с рекомендациями раздела 19.

Уголки должны быть изготовлены из стали марок 20, Ст2 или Ст3.

Таблица 6.3

Температура подогрева стыков труб перед прихваткой и сваркой дуговыми способами при положительной температуре окружающего воздуха

Марка стали свариваемых деталей	Номинальная толщина свариваемых деталей, мм	Температура подогрева, °С
Ст2, Ст3, Ст3Г, Ст4, 08,10, 15Л, 20, 20Л	До 100 включительно Свыше 100	- 100-150
25Л, 10Г2	До 60 включительно Свыше 60	_ 100–150
15ГС, 16ГС, 17ГС, 14ГН, 16ГН, 09Г2С, 10Г2С1, 17Г1С, 17Г1СУ, 14ХГС	До 30 включительно Свыше 30	_ 100–150
20ГСЛ	До 30 включительно Свыше 30	_ 150–200

Марка стали свариваемых деталей	Номинальная толщина свариваемых деталей, мм	Температура подогрева, °С
12MX, 15XM	До 10 включительно Свыше 10 до 30 включительно Свыше 30	- 150–200 200–250
12X1MФ*, 12X2M1, 20XMЛ	До 10 включительно Свыше 10 до 30 включительно Свыше 30	_ 200–250 250–300
20ХМФЛ, 15Х1М1ФЛ, 15Х1М1Ф-ЦЛ, 15Х1М1Ф	До 10 включительно Свыше 10	_ 300–350
12Х2МФСР, 12Х2МФБ	До 6 включительно Свыше 6	- 300–350

^{*} Для стыков труб из стали 12X1MФ с толщиной стенки 11–14 мм температура подогрева должна быть 100–150 °C.

Примечание. Аргонодуговую сварку корневой части шва стыков труб из стали 15Х1М1Ф с толщиной стенки более 10 мм следует выполнять с подогревом 200–250 °C, из других марок стали – без подогрева.

6.2.3. Временные привариваемые технологические крепления, применяющиеся при сборке деталей или узлов (монтажных блоков), должны устанавливаться и привариваться в соответствии с требованиями ППР или другой производственной технологической документации (ПТД). В случае отсутствия таких указаний установка временных технологических креплений должна производиться с соблюдением следующих требований:

временные технологические крепления должны быть изготовлены из стали того же структурного класса, что и собирае-

мые детали. При этом желательно, чтобы уровень легирования стали временных технологических креплений был ниже уровня легирования стали собираемой детали. При сборке детали из стали перлитного класса с деталью из стали аустенитного класса временные технологические крепления следует изготавливать из углеродистой стали; в этом случае присадочный материал для приварки крепления к трубе из аустенитной стали выбирается по табл. 15.1;

приварка временных технологических креплений к собираемым деталям должна производиться ручной дуговой или ручной аргонодуговой сваркой;

сварочный материал должен использоваться в соответствии с требованиями табл. 4.1 и 4.4 и выбираться по менее легированному из свариваемых элементов;

подогрев свариваемых элементов должен осуществляться в соответствии с требованиями подраздела 6.4, при этом приварку креплений из углеродистых сталей к деталям из углеродистой и кремнемарганцовистой стали допускается выполнять без подогрева независимо от толщины свариваемых деталей;

нельзя приваривать временные технологические крепления к сварным швам и разделкам под сварные швы;

после выполнения сварного соединения (полностью или частично) временные технологические крепления должны быть удалены механическим путем или кислородной, плазменнодуговой либо воздушно-дуговой резкой без углубления в основной металл с последующей обработкой этого места абразивным инструментом.

6.2.4. Непосредственно перед сборкой изготовленные под сварку кромки и прилегающие к ним участки поверхностей деталей должны быть зачищены до металлического блеска и обезжирены. Ширина зачищенных участков, считая от кромки разделки, должна быть не менее 20 мм с наружной и не менее 10 мм с внутренней стороны детали. Перед установкой штуцера (трубы) в коллектор или трубопровод поверхность вокруг отверстия должна быть зачищена на расстоянии 15–20 мм со

стороны наложения сварного шва, а поверхность очка – на всю глубину.

6.2.5. Смещение (несовпадение) внутренних поверхностей свариваемых труб (и фасонных деталей) при сварке стыков без подкладного кольца с односторонней разделкой кромок должно быть не более (0,02 $S_{\rm H}$ + 0,4) мм ($S_{\rm H}$ — номинальная толщина свариваемых деталей), но не более 1 мм.

Для стыков трубопроводов на рабочее давление до 2,2 МПа (22 кгс/см²) при диаметре труб более 200 мм, свариваемых без подкладного кольца, смещение внутренних кромок должно быть не выше: при толщине стенки трубы до 4 мм - 0,2S, при большей толщине - 0,15S, но не более 2 мм.

В стыках труб, собираемых и свариваемых на остающемся подкладном кольце, допускаются разность внутренних диаметров элементов не более 2 мм, зазор между кольцом и внутренней поверхностью элемента не более 1 мм. Если эти требования нельзя выполнить из-за большей разности внутренних диаметров стыкуемых элементов, плавный переход от одного элемента к другому следует сделать в соответствии с указаниями п. 6.1.6.

Для стыков с остающимся подкладным кольцом при разности внутренних диаметров стыкуемых элементов не более 6 мм может быть применено фигурное подкладное кольцо (рис. 6.5).

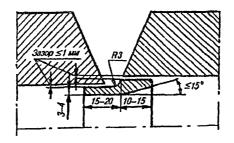
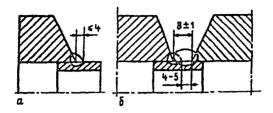


Рис. 6.5. Стыковка труб с разными внутренними диаметрами с использованием фигурного подкладного кольца

- 6.2.6. При сборке труб и других элементов, имеющих продольные или спиральные швы, последние должны быть смещены один относительно другого. Смещение должно быть не менее трехкратной толщины стенки свариваемых труб (элементов), но не менее 100 мм; на трубы и элементы наружным диаметром менее 100 мм это требование не распространяется.
- 6.2.7. Прямолинейность труб в месте стыка (отсутствие переломов) и смещение кромок проверяют линейкой длиной 400 мм, прикладывая ее в трех-четырех местах по окружности стыка. В правильно собранном стыке максимально допустимый просвет между концом линейки и поверхностью трубы должен быть не более 1,5 мм на расстоянии 200 мм от стыка, в сваренном стыке не более 3 мм (без учета смещения согласно п. 6.1.7).
- 6.2.8. При сборке стыка необходимо предусмотреть возможность свободной усадки металла шва в процессе сварки; не допускается выполнять сборку стыка с натягом.
- 6.2.9. При сборке стыков трубопроводов с подкладным кольцом его прихватку и приварку должен выполнять сварщик, который в дальнейшем будет сваривать этот стык, или сварщик, имеющий удостоверение на право сварки подобных стыков. В собранном стыке не должно быть перекоса подкладного кольца.

Последовательность сборки стыка с подкладным кольцом такова:

устанавливают подкладное кольцо в одну из труб с зазором между кольцом и внутренней поверхностью трубы не более 1 мм;


кольцо должно заходить в трубу примерно на величину 1/3 его ширины;

производят прихватку кольца с наружной стороны трубы в двух местах и затем приварку его к трубе ниточным швом катетом не более 4 мм (рис. 6.6, a)*. Прихватку и приварку кольца к

^{*} При приварке кольца к первой трубе ручной аргонодуговой сваркой следует руководствоваться указаниями, приведенными в подразделе 8.3.

трубе из низколегированной стали следует выполнять с предварительным подогревом конца трубы и подкладного кольца в соответствии с требованиями подраздела 6.4;

зачищают ниточный шов от шлака и брызг;

Рис. 6.6. Приварка подкладного кольца к первой (а) и второй (б) трубам

надвигают на выступающую часть подкладного кольца вторую трубу;

зазор между ниточным швом и второй трубой должен быть 4–5 мм;

проверяют правильность сборки стыка;

приваривают подкладное кольцо ко второй трубе (рис. 6.6, 6), предварительно подогрев стык согласно требованиям подраздела 6.4.

Корневой слой шва следует сваривать электродами диаметром 2,5—3 мм.

Примечание. Трубы с приваренным подкладным кольцом в процессе сборки не должны подвергаться ударам по кромкам и кольцу.

6.2.10. Подкладные кольца для стыков труб из углеродистых и низколегированных сталей должны изготавливаться из стали 20 или другой малоуглеродистой стали спокойной или полуспокойной выплавки с содержанием углерода не более 0,24%; для стыков труб из низколегированных теплоустойчивых сталей можно применять подкладные кольца из сталей 12МХ, 15ХМ и 12Х1МФ. Размеры подкладного кольца: шири-

на 20–25 мм, толщина 3–4 мм. Если кольцо изготавливается из полосовой стали, его стыковой шов должен быть зачищен заподлицо с внутренней и наружной сторон.

6.2.11. Сборку замыкающего стыка при холодном натяге (независимо от способа сварки стыка) следует производить после окончания сварки, термообработки и контроля качества остальных стыков по всей длине участка трубопровода, на котором необходимо выполнить холодный натяг. В процессе сварки и термообработки замыкающего стыка необходимо укрепить трубопровод в таком положении, чтобы стык не испытывал усилий от холодного натяга.

Рекомендуется следующий порядок технологических операций сборки, сварки и термообработки стыка с холодным натягом (рис. 6.7):

при сборке стыка установить временную вставку 3 в виде кольца из трубы; длина вставки должна быть равна размеру холодного натяга l_∞ ;

после сварки и термообработки всех других стыков на этой нитке трубопровод освободить от связей на неподвижной опоре 2;

из стыка удалить временную вставку, с помощью троса левый участок трубопровода подтянуть на длину $l_{\rm xH}$ и закрепить в таком положении с помощью троса;

произвести сборку, прихватку, сварку и термообработку замыкающего стыка;

трубопровод установить на опоре 2 в проектное положение.

6.2.12. За качество сборки стыков отвечает производитель сборочных работ (мастер, бригадир, звеньевой).

Качество сборки стыков трубопроводов давлением выше 2,2 МПа (22 кгс/см²), а также трубопроводов диаметром более 600 мм независимо от рабочего давления должен проверять мастер (бригадир, звеньевой) или контролер.

Перед прихваткой и началом сварки качество сборки стыка должен проверить сварщик.

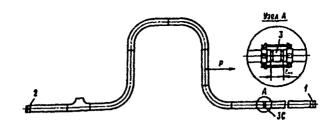


Рис. 6.7. Схема сборки и сварки замыкающего стыка при холодном натяге:

1 и 2 — неподвижные опоры; 3 — временная вставка; Р — трос; 3C — замыкающий стык

При контроле качества сборки стыков паропроводов с рабочей температурой 450 °C и выше необходимо проверить наличие заводских номеров (номер плавки и номер трубы) в маркировке труб.

Примечание. На заводах порядок приемки собранных стыков устанавливают в соответствии с технологическим процессом и указывают в карте операционного контроля.

6.3. Выполнение прихваток

- 6.3.1. Собранные стыки труб и других элементов необходимо прихватывать в нескольких местах. Прихватки на месте пересечения швов не допускаются.
- 6.3.2. Прихваточные швы рекомендуется выполнять тем же способом сварки, что и корневой. Если корневой слой шва накладывается автоматическим или механизированным способом, прихватки следует выполнять ручным дуговым или ручным аргонодуговым способом. При прихватке должен применяться тот же присадочный материал, который будет использоваться (или может быть использован) для сварки корневого слоя. Прихватку должен производить сварщик, допущенный к сварке стыков труб соответствующей марки стали, по возможности тот, который будет сваривать данный стык.

- 6.3.3. Прихватки необходимо выполнять с полным проваром и по возможности переваривать при наложении основного шва.
- 6.3.4. К качеству прихваток предъявляются такие же требования, как и к сварному шву. Прихватки, имеющие недопустимые дефекты, обнаруженные при визуальном контроле, спедует удалять механическим способом.
- 6.3.5. Прихваточные швы должны быть равномерно расположены по периметру стыка. Не рекомендуется накладывать прихватки на потолочный участок стыка.

В стыках, собираемых без подкладных колец, число прихваток и их протяженность зависят от диаметра труб и должны соответствовать следующим нормам:

Диаметр труб, мм	До 50	Свыше 50 до 100	Свыше 100 до 426	Свыше 426
Число прихваток по периметру	1–2	1–3	3–4	Через 300–400 мм
Протяженность одной прихватки, мм	5–20	20–30	30–40	4060

Высота прихваток должна быть равна:

при их выполнении ручной дуговой сваркой на стыках труб с толщиной стенки S=3 мм и менее — толщине стенки трубы; с толщиной стенки более 3 до 10 мм — (0,6-0,7)S, но не менее 3 мм; с толщиной стенки более 10 мм — 5-6 мм;

при их выполнении ручной аргонодуговой сваркой без присадочной проволоки на стыках труб с разделкой Тр-1 (см. табл. 6.2) — толщине стенки трубы; на стыках труб с разделками Тр-2, Тр-6, Тр-7 — величине $b \pm 0.5$ мм (b — размер притупления). При выполнении прихваток с присадочной проволокой высота прихватки может быть увеличена на 0.5—1 мм.

6.4. Подогрев стыков при прихватке и сварке

6.4.1. Необходимость и температура подогрева стыковых соединений перед прихваткой и сваркой дуговыми способами

при положительной температуре окружающего воздуха регламентируется данными табл. 6.3.

Температура подогрева угловых сварных соединений трубных систем определяется также по табл. 6.3, при этом за номинальную толщину свариваемых деталей принимается толщина более толстой детали (коллектора или трубопровода).

Газовая сварка выполняется без специального подогрева стыка, но с прогревом его перед сваркой в соответствии с требованиями подраздела 10.9.

6.4.2. Подогревать стык можно индукторами (током промышленной или средней частоты), радиационными нагревателями сопротивления, газовым пламенем, обеспечивая нагрев стыка по всему периметру. В стыках труб с толщиной стенки более 30 мм ширина зоны подогрева должна быть не менее 150 мм (по 70–75 мм с каждой стороны), при толщине стенки до 30 мм — не менее 100 мм.

Ширина зоны подогрева угловых и нахлесточных соединений – 50–75 мм в каждую сторону от будущего шва.

Стыки труб из сталей 12X1МФ и 15X1М1Ф при толщине стенки более 45 мм следует нагревать индуктором. Подогрев этих стыков должен быть организован так, чтобы сразу после окончания сварки можно было произвести их термообработку.

Стыки труб с толщиной стенки 25 мм и менее разрешается нагревать газовым пламенем. Стыки труб с толщиной стенки более 25 мм можно нагревать газопламенными сварочными горелками или резаками лишь в исключительных случаях, если нет возможности установить индуктор, радиационный нагреватель или кольцевую горелку; при этом необходимо надеть на трубу асбестовый муфель (манжету) и обеспечить равномерный нагрев стыка по всему периметру.

При приварке подкладного кольца конец трубы можно подогревать газовым пламенем независимо от толщины стенки трубы.

6.4.3. Температуру подогрева можно контролировать с помощью термопар (ТП), цифровых контактных термометров

(ТК-3М, ТК-5 и др.), пирометров, термокарандашей, термокрасок. Контроль температуры предварительного и сопутствующего подогрева стыков трубопроводов из низколегированных сталей диаметром свыше 600 мм при толщине стенки более 25 мм необходимо производить в двух диаметрально противоположных точках по периметру стыка, при этом на вертикальных стыках замер производится в нижней и верхней точках стыка.

При положительной температуре окружающего воздуха температуру подогрева стыка разрешается контролировать с помощью спички: ее воспламенение (без трения о поверхность металла) происходит при температуре металла около 270 °С. Замер температуры подогрева следует производить в пределах зоны нагрева, ширина которой определяется п. 6.4.2.

6.5. Технология сварки стыков труб

- 6.5.1. Сварку стыков труб рекомендуется начинать сразу после прихватки. Промежуток времени между окончанием выполнения прихваток и началом сварки стыков труб из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов должен быть не более 4 ч. Непосредственно перед сваркой необходимо проверить состояние поверхности стыка и в случае необходимости зачистить его в соответствии с указаниями п. 6.2.4.
- 6.5.2. Стыки труб (деталей) из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов следует сваривать без перерыва.

При вынужденных перерывах в работе (авария, отключение тока) необходимо обеспечить медленное и равномерное охлаждение стыка любыми доступными средствами (например, обкладкой листовым асбестом), а при возобновлении сварки следует подогреть стык (если это требуется) до температуры, указанной в табл. 6.3. Эту температуру нужно поддерживать до окончания сварки.

Не допускается никаких силовых воздействий на стык до завершения его сварки и проведения термообработки, если таковая необходима. **Примечание.** Сварное соединение трубопроводов из теплоустойчивых сталей, выполненное с перерывом, должно быть обязательно проконтролировано УЗД по всему периметру шва.

6.5.3. Во всех случаях многослойной сварки разбивать шов на участки необходимо с таким расчетом, чтобы стыки участков («замки» швов) в соседних слоях не совпадали, а были смещены один относительно другого, и каждый последующий участок перекрывал предыдущий. Размер смещения и перекрытия «а» (рис. 6.8) при автоматической сварке под флюсом должен быть не менее 50 мм, при всех других способах сварки – 12–18 мм.

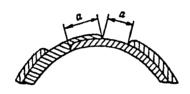


Рис. 6.8. Схема наложения «замков» швов

- 6.5.4. Ручную дуговую сварку следует выполнять возможно короткой дугой, особенно при использовании электродов с основным покрытием, для которых длина дуги должна быть не более диаметра электрода. В процессе сварки необходимо как можно реже обрывать дугу. Перед гашением дуги сварщик должен заполнить кратер путем постепенного отвода электрода и вывода дуги назад на 15–20 мм на только что наложенный шов. Последующее зажигание дуги производится на кромке трубы или на металле шва на расстоянии 20–25 мм от кратера.
- 6.5.5. При ручной дуговой сварке во избежание зашлаковки металла шва около кромок труб следует наплавлять возможно более плоский валик.
- 6.5.6. В процессе сварки должны быть обеспечены полный провар корня шва и заделка кратера. По окончании наплавки каждого валика необходимо полностью удалить шлак после его охлаждения (потемнения). При обнаружении на по-

верхности шва дефектов (трещин, скоплений пор и т. п.) дефектное место следует удалить механическим способом до «здорового» металла и при необходимости заварить вновь.

6.5.7. Для придания сварному соединению надлежащего внешнего вида верхние слои шва следует выполнять по специальной технологии, изложенной в приложении 12.

Независимо от технологии наложения облицовочного слоя, выполненного ручной дуговой сваркой, он должен отвечать следующим требованиям:

иметь равномерную чешуйчатость с размером чешуек 1— 1,5 мм;

отсутствие западаний между валиками;

иметь плавный переход от одного валика к другому и к поверхности трубы;

выпуклость (усиление) шва следует выдерживать в пределах, указанных в приложении 12; для труб с толщиной стенки более 20 мм максимальный размер выпуклости может составлять 5 мм;

перекрытие крайними валиками кромок труб должно быть 1–3 мм.

В стыковых швах, выполненных автоматической сваркой, при толщине стенки до 8 мм допускается выполнять шов без выпуклости (шов накладывается заподлицо с трубой).

- 6.5.8. Во время сварки элементов из подкаливающихся сталей (труб из сталей марок 15ХМ, 12Х1МФ, 15Х1М1Ф, 12Х2МФСР, 10Х9МФБ, 12Х11В2МФ и литья аналогичного состава) следует заглушать концы труб или закрывать задвижки на трубопроводе.
- 6.5.9. При температуре окружающего воздуха ниже 0 °C сваривать и прихватывать стыки трубопроводов и труб котлов необходимо с соблюдением следующих требований:
- а) минимальная температура окружающего воздуха, при которой может выполняться прихватка и сварка элементов котлов и трубопроводов в зависимости от марки стали, приведена в табл. 6.4;

б) стыки труб, которые при положительной температуре полагается сваривать с подогревом и термообрабатывать (см. табл. 6.3 и 17.1), при отрицательной температуре должны быть подвергнуты термообработке непосредственно после сварки; перерыв между сваркой и термообработкой допускается при условии поддержания в это время в стыке температуры сопутствующего подогрева;

Таблица 6.4

Требования к температуре окружающего воздуха при сварке и прихватке элементов котлов и трубопроводов

Сталь свариваемых эле- ментов	Номинальная толщина металла, мм	Минимальная температура окружающего воздуха, °С
Ст2, Ст3, Ст3Г, Ст4, 08, 10, 20	Независимо	-20
15Л, 20Л, 25Л, 20ГСЛ, углеродистая сталь с содержанием углерода более 0,24%	Независимо	-10
10Г2, 09Г2С, 10Г2С1, 15Г2С, 16ГН, 14ГН, 14ХГС, 17Г1С, 17Г1СУ, 15ГС, 16ГС, 17ГС	≤10 >10	-20 -10
12MX, 15XM, 12X1МФ	≤10 >10	-15 -10
15Х1М1Ф, 15Х1М1Ф-ЦЛ, 12Х2МФСР, 12Х2МФБ, 12Х2М1, 10Х9МФБ (ДИ 82-Ш)	≤10 >10	-10 0
20ХМЛ, 20ХМФЛ, 15Х1М1ФЛ,12Х11В2МФ, 20Х13, 13Х11Н2В2МФ, 20Х12ВНМФ, 18Х12ВМБФР, ХН35ВТ	Независимо	0

Сталь свариваемых эле- ментов	Номинальная толщина металла, мм	Минимальная температура окружающего воздуха, °С
12X18H12T, 12X18H10T, 31X19H9MBБТ, 10X13Г12БС2H2Д2	Независимо	-20

Примечание. При сварке деталей из сталей разных марок требования по допустимой температуре окружающего воздуха принимаются по стали, для которой допустимой температурой окружающего воздуха является более высокая температура.

- в) стыки, которые при положительной температуре полагается сваривать с подогревом без термообработки (включая продольные швы плавников и вварку уплотнений), при отрицательной температуре должны быть непосредственно после окончания сварки (не допуская остывания стыка) укрыты слоем теплоизоляции толщиной 8—15 мм для обеспечения замедленного охлаждения;
- г) металл в зоне сварного соединения перед прихваткой и сваркой должен быть просушен и прогрет с доведением его температуры до положительной. В случае сварки на трассе трубопроводов из углеродистых и низколегированных конструкционных сталей стык может не прогреваться, если не требуется подогрева стыка согласно табл. 6.3;
- д) подогрев стыков при прихватке и сварке производится в тех же случаях, что и при положительной температуре окружающего воздуха, но температура подогрева должна быть на 50 °C выше указанной в табл. 6.3;
- е) во время всех термических операций (прихватки, сварки, термообработки и т. д.) стыки труб должны быть защищены от воздействия осадков, ветра, сквозняков до полного их остывания.

Примечание. При сварке в местных укрытиях типа будок, кабин, палаток температурой окружающего воздуха считается

температура внутри укрытия на расстоянии 0,5-0,8 м от стыка по горизонтали.

6.5.10. При сварке трубопроводов и других массивных металлоконструкций из ферромагнитных сталей довольно частым явлением бывает так называемое «магнитное дутье», которое значительно затрудняет ведение процесса сварки и приводит к образованию дефектов в сварном шве. Сущность этого явления состоит в том, что магнитное поле, созданное посторонними источниками тока, которые обычно присутствуют вблизи места сварки, взаимодействует с магнитным полем самой сварочной дуги и нарушает ее стабильное горение. Действие постороннего магнитного поля может быть настолько сильным, что отклонение сварочной дуги не позволяет сварщику наложить сварной шов.

Для устранения или уменьшения магнитного дутья могут быть применены следующие мероприятия: выполнять сварку, когда это возможно, на переменном токе; крепить обратный провод возможно ближе к месту сварки; надежно заземлять свариваемое изделие; ограждать место сварки металлическими экранами для защиты от посторонних магнитных полей.

Если эти меры не приводят к устранению магнитного дутья, то следует использовать более радикальные способы борьбы с этим явлением, один из которых сводится к следующему.

На трубу, подлежащую сварке, или на обе трубы, подготовленные к стыковке либо уже состыкованные, наматывают провод (индуктор) (6—8 витков), подключают к источнику постоянного тока (сварочному преобразователю, выпрямителю) и пропускают через индуктор ток 200—300 А в течение 2—3 мин. Если после этого магнитное поле вокруг труб исчезнет, что проверяется стальной проволокой диаметром 1—1,6 мм и длиной примерно 0,5 м, то проволока не должна притягиваться к трубе. Если проволока притягивается, то надо пропустить через индуктор ток в обратном направлении, т. е. присоединить токоподводящие провода к противоположным выводам индуктора.

6.5.11. Сваренный и зачищенный стык труб с толщиной стенки 6 мм и более сварщик должен заклеймить присвоен-

ным ему клеймом. Клеймо ставят на самом сварном шве вблизи верхнего «замка» (на площадке размером около 20×20 мм, зачищенной абразивным камнем или напильником) или на трубе на расстоянии 30–40 мм от шва.

Если стык сваривают несколько сварщиков, каждый ставит свое клеймо в верхнем конце того участка, который он выполнял. Если стык сваривают по технологии, при которой каждый сварщик должен накладывать швы (слои) в разных местах или по всему периметру стыка (например, при сварке поворотных стыков труб большого диаметра), клеймо ставят все сварщики, выполнявшие этот стык, в одном месте, желательно на его верхнем участке.

При зачистке стыка для ультразвукового контроля место расположения клейма не зачищается; если клеймо было сошлифовано, то его необходимо восстановить.

Для стыков труб из углеродистых сталей диаметром 200 мм и более с рабочим давлением до 2,2 МПа (22 кгс/см²) клеймо может наплавляться сваркой. Клеймение стыков трубопроводов диаметром более 100 мм из перлитных сталей можно производить также с помощью металлической пластины размером 40×30×2 мм, на которой выбивается клеймо сварщика (сварщиков); пластина прихватывается около верхнего «замка» шва вертикального стыка или в любом месте по периметру горизонтального стыка непосредственно к сварному шву или к трубе на расстоянии не более 200 мм от шва. Пластина должна быть изготовлена из малоуглеродистой стали (марок 10, 20, Ст2, Ст3).

7. РУЧНАЯ ДУГОВАЯ СВАРКА ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

- 7.1. Сварка трубопроводов пара и горячей воды, на которые распространяются правила Госгортехнадзора России
- 7.1.1. Конструкция сварного соединения должна отвечать требованиям п. 6.2.1. Могут быть применены конструкции свар-

ного соединения в соответствии с рис. 7.1. Такие конструкции получаются, если в соединении Тр-6 стачивается нижний пояс на одной (рис. 7.1, а) или на обеих трубах (рис. 7.1, б).

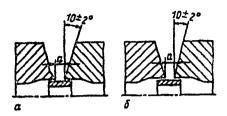


Рис. 7.1. Конструкции сварных соединений труб со снятым нижним скосом

При сварке стыков труб внутренним диаметром более 900 мм, когда возможно выполнять подварку корня шва изнутри трубы, следует применять конструкции стыков Тр-2, Тр-6, Тр-7 или согласно рис. 7.1 (без подкладного кольца) с зазором между трубами 1–2 мм. Перед подваркой корень шва должен быть обработан абразивным инструментом.

В случае стыковки элементов, у одного из которых кромка обработана по типу Тр-6 или Тр-7, а у другого — по типу Тр-2, рекомендуется корень шва выполнять ручной аргонодуговой сваркой при зазоре «а» между стыкуемыми элементами 2 ± 0.5 мм.

- 7.1.2. Марку электродов выбирают в соответствии с рекомендациями, приведенными в табл. 4.1.
- 7.1.3. Примерные значения тока при сварке в нижнем положении шва в зависимости от диаметра и типа покрытия электрода приведены в табл. 7.1. При вертикальном и потолочном положениях шва ток должен быть уменьшен на 10–20%. Для каждой марки электрода режим необходимо уточнять по паспортным данным. Электроды диаметром 5 мм можно применять при сварке в нижнем и вертикальном положениях шва

вертикальных* неповоротных стыков. Потолочный участок шва следует выполнять электродами диаметром не более 4 мм.

Таблица 7.1
Рекомендуемые значения сварочного тока для электродов различных диаметров

Покрытие электрода	Диаметр электрода, мм	Ток, А
Основное (электроды УОНИ-13/55, ЦУ-5, ТМУ-21У, ТМЛ-3У, ТМЛ-1У, ЦЛ-39 и др.)	2,5 3,0 4,0 5,0	70–90 90–110 120–170 170–210
Рутиловое (электроды ОЗС-4, АНО-6 и др.)	2,5 3,0 4,0 5,0	70–90 90–130 140–190 180–230

7.1.4. При сварке вертикальных стыков трубопроводов (рис. 7.2, а) из углеродистых и низколегированных сталей высота каждого слоя (валика) должна составлять 6—10 мм, ширина одного слоя — не более 35 мм.

Примечание. Пункт 7.1.4 относится к сварке по обычной технологии. Требования к размерам слоя (валика) при сварке вертикальных стыков слоями повышенной толщины указаны в подразделе 7.6.

7.1.5. Сварка стыков труб в узкую разделку с углом скоса кромок 7° (тип Тр-За по табл. 6.2) во избежание зашлаковки и несплавлений в корневой части шва должна выполняться следующим образом:

корневой слой накладывается ниточным швом без колебательных поперечных движений электрода; диаметр электрода – не более 3 мм;

^{*} Вертикальными называются стыки, шов которых располагается в вертикальной плоскости или отклоняется от нее на угол не более 45°.

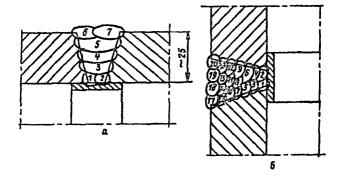


Рис. 7.2. Примерное расположение слоев и валиков (1–20) по сечению шва: а – сварка вертикального стыка труб при толщине стенки 25–30 мм; б – сварка горизонтального стыка труб при толщине стенки 20–25 мм

при наложении последующих слоев электрод передвигается шагообразно вдоль шва с шагом 2—4 мм с задержкой после каждого перемещения на 2—2,5 с. В местах задержки сварщик наклоняет электрод в плоскости, перпендикулярной оси шва, на угол 5—8° в каждую сторону и оставляет его в этом положении в течение 0,5—1 с; диаметр электрода—не более 4 мм;

шагообразное перемещение электрода продолжается до тех пор, пока ширина разделки (расстояние между кромками) не позволит выполнять электродом колебательные движения поперек шва, т. е. производить сварку с обычными манипуляциями электродом.

7.1.6. При сварке горизонтальных* стыков трубопроводов (рис. 7.2, б) из углеродистых и низколегированных сталей высота валика должна быть 4–6 мм, ширина (наибольший размер в поперечном сечении) – 8–14 мм.

^{*} Горизонтальными называют стыки, шов которых располагается в горизонтальной плоскости или отклоняется от нее на угол не более 45°.

- 7.1.7. Неповоротные (вертикальные и горизонтальные) стыки труб диаметром 219 мм и более могут сваривать в зависимости от диаметра труб одновременно два, три или четыре сварщика. В этом случае должны быть приняты меры для защиты каждого сварщика от брызг расплавленного металла и шлака.
- 7.1.8. Если сварку стыка труб из хромомолибденовой или хромомолибденованадиевой стали выполняют одновременно несколько сварщиков, необходимо следить за тем, чтобы металл труб в месте стыка нагревался не выше 450 °C.
- 7.1.9. Вертикальные неповоротные стыки сваривают в направлении снизу вверх. Начиная сварку слоя в потолочной части стыка, следует отступить на 10~30 мм от нижней точки. Порядок наложения слоев, когда вертикальный стык сваривает один сварщик без поворота труб, показан на рис. 7.3.

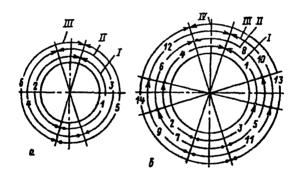


Рис. 7.3. Порядок наложения слоев при сварке одним сварщиком вертикальных неповоротных стыков труб: а — стык труб диаметром до 219 мм; б — стык труб диаметром более 219 мм; 1—14 — последовательность наложения участков (слоев); I—IV— слои шва

Сварку первых трех слоев в стыках труб диаметром более 219 мм следует выполнять обратноступенчатым способом, при этом длина каждого участка должна быть в пределах 200—250 мм. Длина участков последующих слоев может состав-

лять половину окружности стыка. Стыки труб с толщиной стенки до 16 мм можно сваривать участками длиной, равной половине окружности, начиная со второго слоя.

7.1.10. Наложение валиков первого слоя, если сварку вертикального неповоротного стыка труб диаметром 219 мм и более выполняют два сварщика, производится в следующем порядке (рис. 7.4): 1-й сварщик начинает сварку от точки A и ведет к точке B, в это время 2-й сварщик сваривает участок от точки Γ до точки B; далее 1-й сварщик (без перерыва) продолжает сварку от точки B до точки B, а 2-й переходит к сварке участка от точки A к точке Γ .

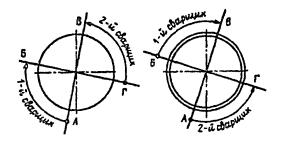


Рис. 7.4. Порядок наложения первого слоя шва при сварке двумя сварщиками вертикальных неповоротных стыков труб диаметром 219 мм и более

Второй и третий слои сваривают аналогично с учетом требований, указанных в п. 7.1.9. Последующие слои можно накладывать участками длиной, равной половине окружности трубы. При сварке верхнего участка вертикальных неповоротных стыков трубопроводов должны соблюдаться требования, приведенные в п. 7.1.4.

7.1.11. Горизонтальные стыки труб диаметром менее 219 мм сваривает один сварщик с учетом правил смещения «замков» в соседних слоях или участках (рис. 7.5, а).

При сварке горизонтальных стыков труб диаметром более 219 мм, выполняемых одним сварщиком, необходимо первые три слоя сваривать обратноступенчатым способом (рис. 7.5. б) участками длиной 200–250 мм. Последующие слои можно сваривать вкруговую.

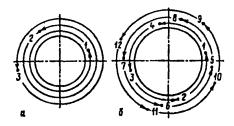


Рис. 7.5. Порядок наложения слоев (валиков) при сварке одним сварщиком горизонтальных стыков труб: а – стык труб диаметром до 219 мм; б – стык труб диаметром более 219 мм; 1–12 – последовательность наложения участков

7.1.12. Последовательность сварки первого (корневого) слоя горизонтальных стыков труб (два сварщика) зависит от диаметра труб. При диаметре труб менее 300 мм каждый сварщик заваривает участок длиной, равной половине окружности; в один и тот же момент сварщики должны находиться в диаметрально противоположных точках стыка (рис. 7.6, а). При диаметре труб 300 мм и более первый слой сваривают обратноступенчатым способом участками длиной по 200-250 мм (рис. 7.6, б). В стыках труб диаметром до 300 мм при толщине стенки более 40 мм первые три слоя следует накладывать обратноступенчатым способом, последующие слои - участками длиной, равной половине окружности трубы, с учетом требований, приведенных в п. 7.1.9. В стыках труб из низколегированных сталей диаметром более 600 мм при толщине стенки 25-45 мм все слои необходимо выполнять обратноступенчатым способом участками длиной не более 250 мм.

7.1.13. Стыки труб диаметром более 600 мм из хромомолибденованадиевых сталей должны сваривать одновременно два сварщика или более, каждый из которых сваривает свой участок стыка по схеме, представленной на рис. 7.7. Швы накладывают обратноступенчатым способом участками длиной 200—250 мм. Четвертый и последующие слои можно сваривать участками длиной, равной 1/4 окружности.

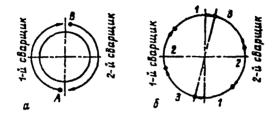


Рис. 7.6. Порядок наложения первого слоя шва при сварке двумя сварщиками горизонтальных стыков труб: а — стык труб диаметром до 300 мм; δ — стык труб диаметром более 300 мм; 1—3 — последовательность наложения участков

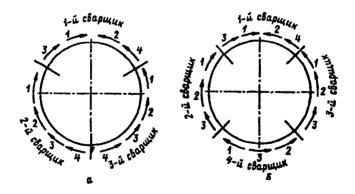


Рис. 7.7. Порядок сварки тремя (а) и четырьмя (б) сварщиками вертикального неповоротного стыка труб диаметром более 600 мм: 1–4 – последовательность наложения участков

7.1.14. Поворотные стыки труб можно сваривать с поворотом на 360° (круговое вращение), 180 и 90°. Поворотные стыки сваривает, как правило, один сварщик.

Если сварку стыка с поворотом на 360° выполняют на рольгангах с механическим вращением труб (с частотой вращения, соответствующей скорости сварки), то удобнее накладывать шов не в зените, а на участке, отстоящем от вертикали на 30–35° в сторону, обратную направлению вращения труб (рис. 7.8, а).

При отсутствии механического вращателя трубы поворачивают несколько раз, причем угол одного поворота α в зависимости от диаметра труб составляет 60—110°, что обеспечивает наложение шва в нижнем и частично вертикальном положениях (рис. 7.8, δ).

Сварку труб диаметром более 219 мм выполняют обратноступенчатым способом за два полных поворота. Сначала на каждый участок АБ (рис. 7.8, в) накладывают один-два первых слоя, затем, когда по всей окружности будут выполнены два первых слоя, заполняют последовательно оставшуюся часть разделки за время второго поворота трубы.

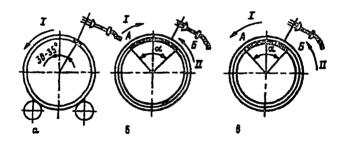


Рис. 7.8. Порядок сварки стыка труб с поворотом на 360°: I – направление вращения труб; II – направление сварки

7.1.15. Сварку стыка с поворотом на 180° производят в два приема. Сначала на участках ГА и ВА (рис. 7.9, а) накладывают один-два первых слоя, затем трубу поворачивают на 180° и

заваривают участки BБ и ΓE , заполняя все сечения шва (рис. 7.9, E). После этого трубы снова поворачивают на 180° и накладывают остальные слои на участках ΓA и BA (рис. 7.9, E). Сварка может выполняться одним или двумя сварщиками.

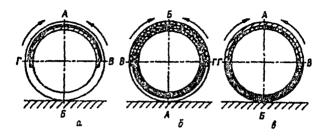


Рис. 7.9. Порядок сварки стыка труб с поворотом на 180°

7.1.16. Сварку стыков с поворотом на 90° выполняют в два приема. Сначала накладывают один-два слоя на участке *АВБ* (рис. 7.10, *a*), затем трубы поворачивают на 90° и заваривают полностью участок *АГБ* (рис. 7.10, *б*). После второго поворота труб в первоначальное положение заваривают остальное сечение шва на участке *АВБ* (рис. 7.10, *в*).

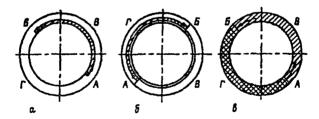


Рис. 7.10. Порядок сварки стыка труб с поворотом на 90°

7.2. Сварка труб малых диаметров

 7.2.1. Настоящий подраздел распространяется на сварку стыков труб поверхностей нагрева котлов, трубопроводов дренажных, фосфатирования, отбора проб, проводок к контрольноизмерительным приборам и средствам автоматизации и других трубопроводов диаметром менее 100 мм при толщине стенки 2—10 мм, изготовленных из углеродистых и низколегированных конструкционных и теплоустойчивых сталей.

- 7.2.2. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).
 - 7.2.3. Марка электродов подбирается по данным табл. 4.1.
- 7.2.4. При сборке и сварке стыков труб малых диаметров необходимо соблюдать следующие требования:

стык необходимо собирать в приспособлении и прихватывать в одной или двух точках, расположенных в диаметрально противоположных местах. Если сборочное приспособление позволяет сваривать весь периметр стыка, то прихватки не следует накладывать и корневой слой шва или весь шов нужно выполнять в стыке, зафиксированном в приспособлении;

стык, скрепленный одной прихваткой, нужно сваривать сразу после выполнения прихватки, при этом наложение корневого слоя необходимо начинать на участке, диаметрально противоположном прихватке;

до полного окончания сварки и остывания шва нельзя подвергать стык каким-либо механическим воздействиям;

прихватку и сварку стыков следует производить без предварительного подогрева независимо от марки стали труб;

для прихватки стыков труб с толщиной стенки до 6 мм включительно нужно применять электроды диаметром не более 2,5 мм, с большей толщиной — электроды диаметром не более 3 мм.

Прихватку разрешается производить аргонодуговой сваркой. Сварочный ток должен быть минимальным, обеспечивающим нормальное ведение сварки и стабильное горение дуги:

Диаметр электрода, мм	2	2,5	3
Максимально лопустимый ток. А	65	90	110

Расположение слоев и валиков показано на рис. 7.11. Последовательность наложения слоев при сварке вертикального и горизонтального стыков труб поверхностей нагрева должна быть

такой же, как при сварке трубопроводов диаметром до 219 мм (см. рис. 7.3, а и 7.5, а).

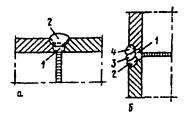


Рис. 7.11. Примерное расположение слоев и валиков при сварке вертикального (a) и горизонтального (б) стыков труб малых диаметров: 1-4 – последовательность наложения слоев

Стыки труб с толщиной стенки более 2 мм следует сваривать не менее чем в два слоя.

7.2.5. Стыки труб поверхностей нагрева котлов и стыки трубопроводов диаметром 30—83 мм может сваривать один сварщик или одновременно два сварщика.

При укрупнительной сборке блоков котла сварку стыков труб поверхностей нагрева выполняют два сварщика. Они располагаются с противоположных сторон блока, и каждый сваривает свою половину стыка.

Стыки труб поверхностей нагрева, собранных в блоки, могут сваривать два сварщика одним из следующих способов.

Первый способ (рис. 7.12). Сварщики выполняют сварку с разрывом в один-два стыка: когда 1-й сварщик заваривает стык 3, 2-й приступает к сварке стыка 1 или 2, который уже заварил 1-й сварщик на своей половине. При сварке вертикальных стыков (рис. 7.12, a) 1-й сварщик начинает сварку в точке A и ведет ее в направлении точки B или Γ , заваривая последовательно участки AB и $A\Gamma$ своей половины стыка AB 2-й сварщик, отставая от первого на один-два стыка, заваривает участки AB и AB также в направлении снизу вверх (стык AB). При сварке горизонтальных стыков (рис. 7.12, BB) 1-й сварщик

заваривает сразу свою половину стыка на участке *БАГ* (стык 3), а 2-й с разрывом в один-два стыка заваривает другую половину стыка на участке *ГВБ*, накладывая шов в том же направлении, что и 1-й сварщик (стык 1). «Замки» участков швов должны быть смещены в соответствии с требованиями п. 6.5.3.

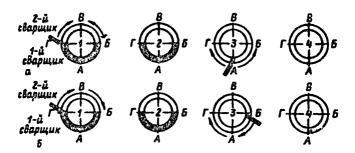


Рис. 7.12. Порядок сварки двумя сварщиками вертикальных (а) и горизонтальных (б) стыков труб поверхностей нагрева, собранных в блоки

Второй способ (рис. 7.13). На вертикальном стыке 1-й сварщик начинает сварку в точке A и ведет ее в направлении точки E, где 2-й сварщик, находящийся с противоположной стороны трубы (блока), как бы перехватывает дугу, зажигая ее на жидкой сварочной ванне, 2-й сварщик заваривает участок EB, а в это время 1-й накладывает шов на участке $A\Gamma$ того же стыка; в районе точки Γ 2-й сварщик вновь перехватывает дугу 1-го и заваривает последний участок ΓB . Горизонтальный стык сваривают по аналогичной схеме, но с той разницей, что «перехват» дуги осуществляется 1 раз (в точке E или E0, после того как 1-й сварщик заварит сразу половину периметра стыка.

При тесном расположении труб, например в газоплотных панелях из оребренных труб, предпочтительнее применять второй способ.

7.2.6. Вертикальные стыки труб поверхностей нагрева сваривает один сварщик участками по четверти периметра. Чтобы

уменьшить перелом трубы в месте стыка вследствие неравномерной усадки, участки необходимо сваривать в последовательности, указанной на рис. 7.14, а цифрами. Горизонтальный стык один сварщик сваривает по схеме, приведенной на рис. 7.14, б: наложение шва начинается со стороны, противоположной прихватке; каждый последующий слой накладывается в направлении, противоположном направлению сварки предыдущего слоя, при этом «замки» швов должны быть смещены согласно требованиям, приведенным в п. 6.5.3.

Рис. 7.13. Схема сварки двумя сварщиками вертикального стыка труб поверхностей нагрева методом «перехвата» дуги: 1–4 – последовательность наложения участков

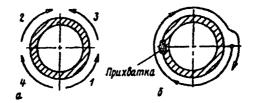


Рис. 7.14. Схема сварки одним сварщиком вертикального (а) и горизонтального (б) стыков труб поверхностей нагрева: 1–4 – последовательность наложения участков

7.2.7. При сварке стыков труб поверхностей нагрева котлов, собранных в блоки, а также при приварке труб к штуцерам или непосредственно к коллекторам необходимо в каждом конкретном случае применять в зависимости от конструкции котла такую последовательность сварки, которая позволила бы в процессе сварочных работ проводить контроль сварных стыков и при необходимости их переваривать.

7.3. Сварка газопроводов (трубопроводов горючего газа)

7.3.1. Ручную дуговую сварку газопроводов внутри зданий и на территории ТЭС можно выполнять без подкладного кольца или на остающемся металлическом кольце. Конструкции стыковых соединений должны соответствовать типам Тр-2 или Тр-3 (см. табл. 6.2).

Стыки газопроводов можно выполнять ручной аргонодуговой сваркой согласно разделу 8.

7.3.2. При сборке стыков газопроводов без подкладных колец корневой слой рекомендуется выполнять электродами ВСЦ-4А или МТГ-01К диаметром 3—4 мм, заполнение разделки—электродами МТГ-02 или другой марки, указанной в табл. 4.1 для конкретной марки стали.

Сварка электродами ВСЦ-4А ведется методом опирания без колебательных движений, вертикальные стыки свариваются в направлении сверху вниз.

При сварке корневого слоя шва электродами других марок диаметр электрода должен быть не более 3 мм. Сварку последующих слоев вертикальных неповоротных стыков производят снизу вверх электродами диаметром 4–5 мм.

- 7.3.3. Сварку вертикальных неповоротных стыков труб с толщиной стенки до 6 мм необходимо выполнять не менее чем в два слоя (см. рис. 7.11); при толщине стенки труб от 6 до 12 мм в три слоя и при толщине более 12 мм в четыре слоя и более (рис. 7.15).
- 7.3.4. Технология ручной дуговой сварки стыков газопроводов во всем остальном должна отвечать требованиям, изложенным в подразделе 7.1.

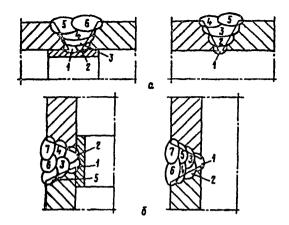


Рис. 7.15. Примерное расположение слоев и валиков при ручной дуговой сварке вертикального неповоротного (а) и горизонтального (б) стыков газопроводов с толщиной стенки труб более 12 мм: 1–7– последовательность наложения слоев (валиков)

7.4. Сварка трубопроводов, на которые не распространяются правила Госгортехнадзора России

- 7.4.1. В данном подразделе рассматривается сварка стыков трубопроводов из углеродистых и низколегированных конструкционных сталей, на которые не распространяются правила Госгортехнадзора России, в том числе мазутопроводов, напорных маслопроводов системы смазки, трубопроводов системы регулирования турбины, водоснабжения и канализации.
- 7.4.2. Сварку стыков трубопроводов при толщине стенки 12—14 мм следует выполнять тремя основными слоями шва и одним внутренним подварочным слоем толщиной 4—5 мм, который накладывают изнутри трубы (рис. 7.16). Подварочный слой накладывают в тех случаях, когда диаметр трубопровода и расположение стыка позволяют это. В остальных случаях сварку следует выполнять на подкладном кольце, кроме сты-

ков мазутопроводов, которые свариваются без подкладных колец с выполнением корня шва (или всего шва) ручным аргонодуговым способом.

Рис. 7.16. Расположение слоев (валиков) при сварке стыков трубопроводов со стенкой толщиной 12–14 мм: 1–3 – последовательность наложения слоев (валиков)

7.4.3. В процессе сварки должны соблюдаться следующие требования:

при диаметре труб 600 мм и более сварку следует производить обратноступенчатым способом участками длиной 250—300 мм:

при выполнении сварки без подварочного шва корневой слой необходимо накладывать электродами диаметром 2,5—3 мм для обеспечения полного провара корня;

подварочный слой следует накладывать после выполнения второго или третьего наружного слоя; перед наложением подварочного слоя корень шва должен быть тщательно очищен абразивным кругом или стальной щеткой с подрубкой зубилом излишних наплывов металла и вырубкой местных непроваров;

«замки» швов в соседних слоях (валиках) должны быть смещены один относительно другого согласно требованиям п. 6.5.3, а по отношению к продольным или спиральным швам сварных труб – на 40–50 мм.

7.4.4. Неповоротные стыки труб диаметром 1200 мм и более можно выполнять по следующей технологии: окружность стыка разбить на две половины — нижнюю и верхнюю; раскрытие кромок и сварку в нижней части стыка выполнять с внутренней, а в верхней части — с наружной стороны трубы. Таким образом, весь стык следует сваривать в нижнем и вертикаль-

ном положениях. Сварку должны выполнять одновременно два или четыре сварщика: один сварщик (или два) сваривает верхнюю часть стыка снаружи трубы, другой сварщик (или два других) — нижнюю изнутри (рис. 7.17); при этом должны быть приняты меры для защиты сварщиков, работающих внутри трубы, от брызг шлака и расплавленного металла.

Рис. 7.17. Порядок наложения валиков при сварке первого слоя стыков труб диаметром 1200 мм и более: 1—4— последовательность наложения участков шва

7.5. Приварка фланцев, арматуры и других деталей к трубам

- 7.5.1. Арматуру (клапаны, задвижки), фланцы, донышки, заглушки и другие фасонные детали, присоединяемые к трубам стыковым сварным швом, приваривают с соблюдением тех же режимов и технологии, что и при сварке стыков трубопровода соответствующих диаметра и марки стали, а также требований п. 3.7 и подразделов 6.4 и 6.5.
- 7.5.2. Плоские фланцы на давление *P* ≤ 2,5 МПа (25 кгс/см²) для диаметра труб 600 мм и более изготавливаются по ОСТ 34 10.755–97. Фланец приваривается к трубе двумя угловыми швами наружным и внутренним (рис. 7.18). Сначала накладывают наружный шов, затем внутренний. Размеры швов приварки указаны в табл. 7.2. Внутренний шов, являющийся лишь уплотняющим, имеет катет 7-² мм независимо от толщины стенки трубы.

Для труб диаметром менее 600 мм плоские приварные фланцы изготавливаются по ГОСТ 12820 и размеры катетов шва указываются в конструкторской документации.

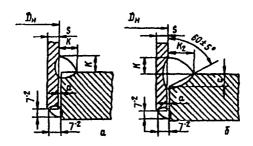


Рис. 7.18. Приварка плоских фланцев к трубе: a – при условном давлении P_y ≤ 1,6 МПа (16 кгс/см²); 6 – при P_y ≤ 2,5 МПа (25 кгс/см²)

7.5.3. Приварку креплений из высоколегированных сталей к трубам пароперегревателя и другим элементам котла, находящимся в зонах высоких температур, а также приварку к паропроводам реперов для измерения ползучести необходимо выполнять аустенитными электродами диаметром не более 3 мм на режимах с минимальным тепловложением. Марка электродов выбирается по данным табл. 4.2. Ток устанавливается из расчета 25—30 А на 1 мм диаметра электрода. Сварку следует вести короткой дугой с незначительными колебательными движениями электрода. Каждый следующий валик необходимо накладывать только после снижения температуры металла в зоне сварки ниже 100 °C. Термическая обработка таких сварных соединений не производится.

7.5.4. К трубам из углеродистых и низколегированных теплоустойчивых и конструкционных сталей упоры, накладки, подвески и другие детали креплений из таких же сталей следует приваривать сплошным угловым швом с катетом, указанным в рабочих чертежах, с использованием электродов, подбираемых по данным табл. 4.1. Диаметр электродов должен быть не более 3 мм. Если детали креплений и трубы изготовлены из стали разных марок одного структурного класса, электроды нужно выбирать по менее легированной стали.

Размеры швов приварки плоских фланцев (ОСТ 34 10.755-97)

	Условное давление	Условный проход	Размеры при- соединяемых	Зазор между тру- бой и фланцем	Глубина фаски на фланце	Разм катетов і	
	<i>P</i> _y , МПа (кгс/см²)	Д _у , мм	труб Д _н × S, мм	а, мм, не более	с±1, мм	К	K ₂
Γ		600	630 × 12		12	12 ⁺³	22 ⁺⁵
		700	720 × 9		9	9 ⁺³	18 ⁺⁵
	2,5 (25)	800	820×11	1,5	11	11 ⁺³	21 ⁺⁵
		1000	1020×14		14	14 ⁺⁵	26 ⁺⁵
		1200	1220 × 14		14	14 ⁺⁵	26 ⁺⁵
Γ		700	720 × 9		9	9 ⁺³	18 ⁺⁵
		800	820 × 9		9	9 ⁺³	18 ⁺⁵
	1,6 (16)	1000	1020×10	1,5	10	10 ⁺³	20+5
		1200	1220×11		11	11 ⁺³	21 ⁺⁵
		1400	1420 × 14		14	14 ⁺⁵	26 ⁺⁵
		1600	1620×14		14	14 ⁺⁵	26 ⁺⁵

101

Условное давление	Условный проход	Размеры при- соединяемых	Зазор между тру- Глубина фаски Размер бой и фланцем на фланце катетов шва, м		•	
<i>Р</i> _у , МПа (кгс/см²)	Д _у , мм	труб $\mathcal{L}_{H} \times S$, мм	<i>а</i> , мм, не более	с±1, мм	К	K ₂
	700	720×9		9	9+3	18 ⁺⁵
	800	820 × 9		9	9+3	18 ⁺⁵
1,0 (10)	1000	1020 × 10	1,5	10	10 ⁺³	20 ⁺⁵
	1200	1220×11		11	11 ⁺³	21 ⁺⁵
	1400	1420 × 14		14	14 ⁺⁵	26 ⁺⁵
	1600	1620 × 14		14	14 ⁺⁵	26 ⁺⁵
	1200	1220 × 14		11	11+3	21 ⁺⁵
0,6 (6)	1400	1420 × 14	1,5	14	14 ⁺⁵	26 ⁺⁵
	1600	1620×14		14	14 ⁺⁵	26 ⁺⁵

Подогрев при приварке деталей креплений к трубам из углеродистых и низколегированных сталей осуществляется в соответствии с рекомендациями, приведенными в табл. 6.3, при этом за толщину свариваемых деталей принимается толщина трубы. Подогрев трубы и детали осуществляется в районе приварки.

Приварка упоров к трубопроводам из низколегированных теплоустойчивых сталей должна выполняться по одной из схем, приведенных на рис. 7.19. В случае приварки упора двумя фланговыми швами (рис. 7.19, а) каждый слой сваривается в направлении, противоположном направлению сварки предыдущего слоя. В случае приварки упора двумя фланговыми и одним лобовым швами (рис. 7.19, б) сварка начинается в середине лобового шва (в точке Б) и ведется до конца правого или левого флангового шва. Если длина шва от точки Б до конца флангового шва более 250 мм, то сварка должна выполняться обратноступенчатым способом. Приварку упора к трубе диаметром более 500 мм должны выполнять одновременно два сварщика.

Условия, при которых необходима термообработка угловых швов приварки деталей креплений к трубам, и режим термообработки указаны в подразделе 17.2.

Сварные соединения деталей креплений из углеродистой стали с трубами из низколегированной стали термической обработке не подвергаются.

7.5.5. Приварка бобышек для термопар к трубопроводам производится электродами диаметром не более 3 мм. Марка электродов выбирается по данным табл. 4.1.

Необходимость и режим предварительного подогрева определяются по данным табл. 6.3 и п. 6.4.1. При приварке бобышек к трубопроводу диаметром менее 219 мм необходим предварительный подогрев бобышек и трубы по всему периметру, при диаметре трубопровода 219 мм и более подогревается труба только в районе приварки бобышек и сама бобышка.

Необходимость и режим термообработки этих сварных соединений указаны в подразделе 17.2.

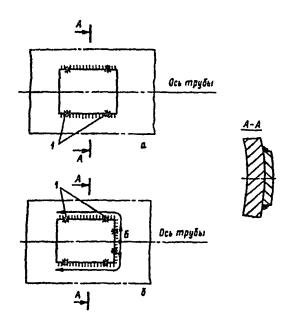


Рис. 7.19. Схемы приварки упора к трубопроводу двумя фланговыми швами (а), двумя фланговыми и одним лобовым швами (б):

1 – прихватки

7.6. Сварка труб слоями повышенной толщины

- 7.6.1. Сварку слоями повышенной толщины можно применять для вертикальных неповоротных стыков труб с толщиной стенки более 20 мм из углеродистых и низколегированных конструкционных сталей.
- 7.6.2. К сварке слоями повышенной толщины может быть допущен сварщик, имеющий удостоверение на право производства работ по сварке данного трубопровода и обладающий, кроме того, навыками по технике сварки слоями повышенной толщины. Для проверки навыка сваривается пробный стык, а затем определяется сплошность шва с помощью ультразвукового контроля.

- 7.6.3. Конструкция сварного соединения должна соответствовать типам Тр-3, Тр-3а, Тр-3г, Тр-6 (табл. 6.2). Можно применять также конструкции стыка, изображенные на рис. 7.1. Подготовку кромок труб и сборку стыка, а также наложение корневого слоя и подогрев стыка производят по обычной технологии в соответствии с требованиями настоящего РД.
- 7.6.4. Основной шов, накладываемый после корневого слоя, выполняют два сварщика. Для совместной работы подбираются сварщики, в равной степени владеющие техникой сварки слоями повышенной толщины и выполняющие ее примерно с одинаковой скоростью.
- 7.6.5. Первый слой основного шва накладывают по обычной технологии, второй - по следующей схеме (рис. 7.20): 1-й сварщик начинает сварку в зените потолочного участка (в точке E) и проваривает свою половину стыка против часовой стрелки до точки М. Толщина слоя на потолочном участке составляет 6-7 мм. Начиная от точки Д, сварщик плавно наращивает толщину слоя; для этого он путем специальных манипуляций электродом вначале создает небольшую горизонтальную площадку (рис. 7.21), а затем производит наплавку на эту площадку в нижнем положении, постепенно увеличивая ее размер до максимального в точке В (рис. 7.20), где толщина слоя может составлять 18-26 мм, далее уменьшает толщину слоя до 6–7 мм в точке M; 2-й сварщик начинает сварку в точке U и проваривает по часовой стрелке четверть стыка до точки M, а затем переходит на нижнюю часть своей половины стыка и накладывает второй слой на участке ЕЖЗИ; способ сварки такой же, как 1-го сварщика, т. е. путем наращивания металла наплавки на горизонтальной площадке.
- 7.6.6. Порядок наложения третьего и последующих слоев может быть таким же, как для второго слоя, с той лишь разницей, что сварщики попеременно начинают сварку с потолочного (из точки E) и с вертикального (из точек B и V) положений.

Можно принять и другой порядок наложения третьего и последующего слоев заполнения: оба сварщика начинают свар-

ку в точке E, но один начинает тогда, когда другой прошел до точки \mathcal{L} или \mathcal{K} .

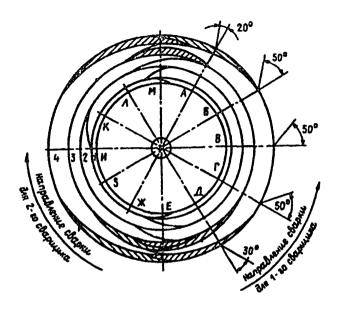


Рис. 7.20. Схема сварки неповоротного вертикального стыка труб слоями повышенной толщины: 1-4 – номера валиков (слоев)

- 7.6.7. Для выравнивания толщины слоев каждый сварщик на участках *ЕЗ*, *ЕГ*, *КМ* и *БМ* должен накладывать подварочные слои (на рис. 7.20 эти слои заштрихованы).
- 7.6.8. В процессе сварки необходимо следить за тем, чтобы жидкая ванна не стекала с горизонтальной площадки, для чего следует плавно менять угол наклона электрода по мере перемещения ванны по окружности стыка.
- 7.6.9. Сварку нужно выполнять возможно короткой дугой. Ориентировочное значение сварочного тока при выполнении основного сечения шва приведено в табл. 7.3.

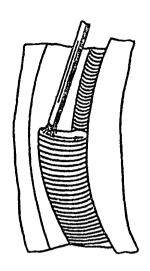


Рис. 7.21. Схема наложения слоя повышенной толщины на вертикальном участке стыка труб

Таблица 7.3

Ориентировочные режимы сварки слоями повышенной толщины

Слой	Участки (рис. 7.20)	Диаметр электрода, мм	Ток, А
Первый	3ЕГ	3,0	100–120
		4,0	150–170
	Остальные	3,0	120–150
		4,0	170–190
Второй и по-	ЖЕД	4,0	160–180
следующие		5,0	200–220
	Остальные	4,0	180–200
		5,0	220–240

Слой	Участки (рис. 7.20)	Диаметр электрода, мм	Ток, А
Облицовочный	ЖЕД	4,0	140-160
	Остальные	4,0	180–200

7.7. Приварка штуцеров (труб) к коллекторам котлов и трубопроводам

7.7.1. Конструкция сварных соединений штуцеров (труб) с основным элементом (коллектором, трубопроводом), выполняемых при ремонте или монтаже котлов, должна соответствовать чертежам или нормалям завода-изготовителя. При отсутствии таких указаний следует, исходя из местных условий. выбрать одну из конструкций, представленных на рис. 7.22, а-д, оформив это совместным техническим решением владельца котла (заказчика) и организации, выполняющей сварочные работы. В конструкции на рис. 7.22, в остающееся подкладное кольцо изготавливается из материала в соответствии с требованиями п. 6.2.10 шириной 20-25 мм и толщиной не менее 2 мм и не более величины, обеспечивающей минимальное проходное сечение трубы; для штуцеров (труб) номинальным наружным диаметром до 83 мм толщина кольца должна быть не более $0.1\mathcal{L}_{BH}$, но не более 4 мм (\mathcal{L}_{BH} – номинальный внутренний диаметр штуцера).

Требования к отклонению оси штуцера от перпендикуляра к оси коллектора (трубопровода) должны указываться в конструкторской документации. В случае отсутствия таких указаний отклонение не должно превышать $\pm 1,5^{\circ}$ (рис. 7.23).

Примечание. При внутреннем диаметре штуцера (трубы) более 100 мм следует применять конструкции, показанные на рис. 7.22, *в*, *г*, которые позволяют контролировать качество сварного соединения с помощью ультразвуковой дефектоскопии.

 7.7.2. Перед допуском к сварке производственных соединений каждый сварщик должен сварить как минимум одно кон-

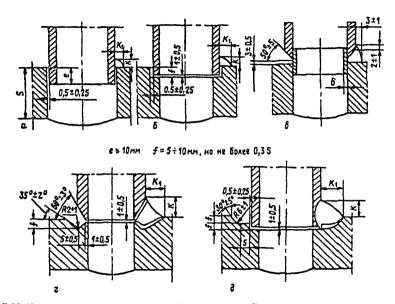


Рис. 7.22. Конструкции сварных соединений штуцеров (труб) с коллекторами и трубопроводами

трольное (допускное) штуцерное соединение, однотипное с производственным, а для сварных соединений из хромомолибденованадиевой стали, если они в производственных условиях не будут подвергаться термообработке, — не менее двух соединений. Такие сварные соединения выполняет сварщик один раз в данной монтажной (ремонтной) организации независимо от числа изделий (котлов, трубопроводов), на которых он будет производить сварку штуцерных соединений. Контрольное соединение выполняется не реже одного раза в течение года.

Качество контрольных сварных соединений из углеродистой и кремнемарганцовистой стали, а также соединений из хромомолибденованадиевой стали, которые в производственных условиях подвергаются термообработке, проверяется путем визуального контроля, измерения швов и исследования макроструктуры шва и околошовной зоны, а сварных соединений из стали 12Х1МФ, которые в производственных условиях не подвергаются термообработке (см. п. 7.7.8), — кроме того, путем определения твердости металла шва. Для исследования макроструктуры и измерения твердости шва из каждого контрольного образца изготавливают по два поперечных шлифа.

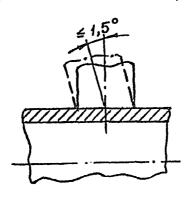


Рис. 7.23. Допускаемое отклонение оси штуцера от перпендикуляра к оси коллектора (трубопровода)

Результаты визуального контроля этих образцов должны отвечать требованиям подраздела 18.3, измерения размеров и формы шва — п. 7.7.9 и рис. 7.22 для сварных соединений из углеродистой и кремнемарганцовистой сталей, а также для угловых сварных соединений из хромомолибденованадиевой стали с последующей термообработкой, п. 7.7.10 и рис. 7.24 — для угловых сварных соединений из хромомолибденованадиевой стали без термообработки.

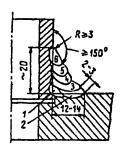


Рис. 7.24. Схема расположения валиков и размеры шва приварки штуцера (трубы) к коллектору (трубопроводу) без последующей термообработки: 1-6- номера слоев

Результаты исследования макроструктуры должны удовлетворять требованиям п. 18.6.24. Твердость шва угловых сварных соединений из хромомолибденовой и хромомолибденованадиевой сталей, выполненных электродами типа Э-09Х1М без термообработки (см. п. 7.7,4), определяемая как среднее арифметическое четырех измерений (по два измерения на каждом шлифе), должна быть не более 270 НВ, при этом результаты каждого измерения должны быть не выше 290 НВ.

- 7.7.3. При длине коллектора (трубопровода) свыше 4 м во время сварки через каждые 2,5 м необходимо установить временные опоры.
- 7.7.4. Для прихватки и приварки штуцеров (труб) нужно использовать электроды диаметром не более 3 мм. Для свар-

ки элементов из углеродистой и кремнемарганцовистой стали следует применять электроды типа Э50А, из хромомолибденовой и хромомолибденованадиевой стали — электроды типа Э-09X1М при условии, что сварные соединения не будут подвергаться термообработке (см. п. 7.7.8); если же сварные соединения будут подвергаться термообработке, то сварка должна производиться электродами типа Э-09X1МФ.

7.7.5. Необходимость и режим предварительного подогрева при прихватке и приварке штуцеров определяются согласно требованиям п. 6.4.1. Подогрев рекомендуется осуществлять изнутри коллектора или трубопровода специальной ацетилено-кислородной горелкой. При диаметре коллектора (трубопровода) менее 500 мм подогрев необходимо выполнять по всему периметру, при диаметре 500 мм и более можно подогревать коллектор (трубопровод) только вокруг зоны приварки штуцера (трубы).

7.7.6. Штуцер (трубу) в отверстие основного элемента нужно устанавливать без натяга с требуемым зазором между штуцером и очком. Прихватку штуцера (трубы) к коллектору (трубопроводу) следует производить в двух-трех точках швами длиной 10—15 мм. Не рекомендуется заранее устанавливать и прихватывать более трех штуцеров, которые приваривает один сварщик.

7.7.7. В случае приварки большого числа штуцеров (труб) необходимо с целью обеспечения наименьших деформаций коллектора руководствоваться следующими положениями:

приварку штуцеров должны выполнять по возможности два или четыре сварщика одновременно при общем направлении их движения от середины коллектора к его краям;

приварку штуцеров в ряду необходимо производить через два-три штуцера;

если приварку выполняют одновременно два сварщика, то первый ведет сварку по одному ряду слева направо, а второй – по соседнему ряду справа налево и т. д.

Во избежание перегрева штуцера каждый сварщик должен одновременно приваривать два или три штуцера, накладывая поочередно на каждом штуцере один-два валика.

7.7.8. Приварка штуцеров (труб) к коллекторам котлов и трубопроводам должна производиться в соответствии с требованиями конструкторской документации на конкретный объект (котел).

Для сварных соединений штуцеров (труб) с коллекторами или трубопроводами, которые не будут подвергаться термической обработке, должны быть выдержаны следующие конструкторские и технологические требования:

- а) места приварки штуцеров к коллекторам (трубопроводам) отверстия под штуцера и прилегающие участки на расстоянии 15–20 мм от очка должны быть тщательно исследованы; все обнаруженные дефекты устранены или исправлены;
- б) если коллектор (трубопровод) и привариваемые штуцера изготовлены из углеродистой стали, то эти элементы не ограничиваются по диаметру и толщине стенки, не ограничивается также число привариваемых к одному коллектору штуцеров (труб), однако расстояние (просвет) между ними должно быть не менее 50 мм;
- в) если коллектор (трубопровод) изготовлен из кремнемарганцовистой стали, а привариваемые штуцера (трубы) — из кремнемарганцовистой или углеродистой стали, то коллектор по толщине стенки и диаметру не ограничивается, а штуцер (труба) должен иметь диаметр не более 100 мм при любой толщине стенки; число привариваемых штуцеров не ограничивается, но просвет между ними должен быть не менее 50 мм;
- г) если коллектор (трубопровод) изготовлен из хромомолибденовой или хромомолибденованадиевой стали, а привариваемые штуцера (трубы) — из хромомолибденовой, хромомолибденованадиевой, кремнемарганцовистой или углеродистой стали, то коллектор по толщине стенки и диаметру не ограничивается, а штуцер (труба) должен иметь диаметр не более 60 мм и толщину стенки не более 10 мм; число привариваемых

штуцеров не ограничивается, но просвет между ними должен быть не менее 90 мм^* .

Твердость стали коллектора, изготовленного из хромомолибденовой или хромомолибденованадиевой стали, должна быть не более 195 HB.

7.7.9. Приварку штуцеров (труб) необходимо производить многослойным швом.

При приварке штуцеров (труб) из углеродистой и кремнемарганцовистой сталей, а также штуцеров (труб) из хромомолибденовой или хромомолибденованадиевой стали с последующей термообработкой сварного соединения размеры катетов шва должны быть (см. рис. 7.22): $K = S_1 + 3$ мм, $K_1 = S_1 + 5$ мм; допустимые отклонения составляют +2 мм для катета размером до 5 мм, +3 мм для катета размером до 12 мм и +5 мм для катета размером более 12 мм (S_1 — толщина штуцера).

7.7.10. Приварка штуцеров (труб) из хромомолибденовой и хромомолибденованадиевой стали к коллекторам (трубопроводам) без последующей термообработки угловых сварных соединений должна производиться швом из шести-семи валиков с соблюдением следующих требований (рис. 7.24):

угол между поверхностями шва и штуцера должен быть не менее 150°, катет шва на коллекторе – 12–14 мм, на штуцере – 17–22 мм;

валик 3 следует накладывать как отжигающий, т. е. расстояние от его края до места перехода шва к поверхности коллектора должно составлять 2–3 мм;

переход от шва к штуцеру должен быть плавным, радиусом не менее 3 мм; при необходимости плавность перехода можно обеспечить с помощью дополнительной обработки этого места сварочной дугой в среде аргона (без присадки) или

^{*} Если по конструктивным или другим соображениям просвет между привариваемыми к коллектору штуцерами (трубами) будет менее 90 мм, необходимо получить заключение специализированной научно-исследовательской организации, указанной в правилах по котлам или по трубопроводам Госгортехнадзора России, о возможности такой приварки с точки зрения работоспособности конкретного изделия.

абразивным инструментом, если такая обработка не приводит к подрезам на поверхности шва или штуцера.

7.7.11. Усиление углового шва наплавкой для повышения работоспособности штуцерных сварных соединений (при ремонте или реконструкции котлов) выполняется по следующей технологии:

электроды для наплавки выбирают в соответствии с требованиями п. 7.7.4; поверхность ранее выполненного шва и штуцера на расстоянии 25–30 мм от шва тщательно зачищают;

место наплавки подогревают до температуры, указанной в табл. 6.3;

три-четыре валика усиливающего шва накладывают с обеспечением плавного перехода к поверхности штуцера; размеры и форма шва должны быть выдержаны в соответствии с рис. 7.25.

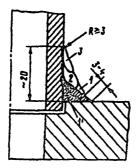


Рис. 7.25. Схема расположения валиков и размеры шва при усилении соединения штуцера (трубы) с коллектором (трубопроводом) путем наплавки: 1–3 – номера слоев усиливающего шва; 1′ – ранее выполненный шов

- 7.7.12. Контроль качества угловых сварных соединений штуцеров (труб) с коллекторами (трубопроводами) проводится путем:
- а) визуального контроля всех швов, результаты которого должны удовлетворять требованиям табл. 18.2;

- б) измерительного контроля размеров и формы швов в объеме не менее 10% сварных соединений; контроль следует производить с помощью шаблонов и результаты контроля должны отвечать требованиям пп. 7.7.9 и 7.7.10;
- в) измерения твердости металла шва приварки штуцеров (труб) к коллекторам и трубопроводам из хромомолибденовой и хромомолибденованадиевой стали; объем и результаты контроля должны соответствовать требованиям пп. 18.4.2, б и 18.4.4.

8. РУЧНАЯ АРГОНОДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ*

8.1. Аргонодуговая и комбинированная сварка труб малых диаметров

8.1.1. Требования данного подраздела распространяются на сборку и сварку неповоротных стыков труб наружным диаметром 100 мм и менее, при этом предусматривается два технологических варианта сварки:

сварной шов выполняется комбинированным способом: корневой слой – ручной аргонодуговой сваркой неплавящимся электродом, последующие слои – ручной дуговой сваркой покрытыми электродами;

сварной шов полностью выполняется ручной аргонодуговой сваркой неплавящимся электродом.

Для стыков труб при толщине стенки 4 мм и более предпочтение следует отдавать комбинированному способу; при меньшей толщине нужно сваривать стык полностью ручной аргонодуговой сваркой.

8.1.2. Для ручной аргонодуговой сварки неплавящимся электродом рекомендуется использовать однопостовый источ-

^{*} Раздел 8 распространяется на все марки углеродистых и низколегированных сталей, перечисленные в табл. П28.1 приложения 28, независимо от назначения трубопровода.

ник постоянного тока, оснащенный устройством бесконтактного или контактного возбуждения дуги на малых токах и плавного снижения сварочного тока при заварке кратера шва (в частности, ТИР-300ДМ1, УДГ-350, УПС-301), или многопостовый источник с балластным реостатом для регулирования сварочного тока и обеспечения стабильного горения сварочной дуги.

Аргон из баллона должен поступать в горелку через редуктор с дозирующим устройством; могут быть также применены редукторы-расходомеры AP-10, AP-40 или любой кислородный редуктор с ротаметром типа PM.

Для ручной сварки неплавящимся электродом в среде аргона стыков труб в монтажных и ремонтных условиях рекомендуется применять малогабаритные горелки МАГ-3, АГМ-2 и др.

- 8.1.3. Конструкция сварных соединений должна соответствовать требованиям, приведенным в табл. 6.2 (разделки Тр-1 или Тр-2).
- 8.1.4. Собранные стыки прихватывают в одном или двух местах ручной аргонодуговой сваркой с применением присадочной проволоки или без нее. Исключение составляют стыки труб из углеродистой стали, которые всегда следует прихватывать с применением присадочной проволоки, а также стыки труб из стали других марок при зазоре между трубами более 0,5 мм. Используется присадочная проволока той же марки, какая будет применяться для сварки данного стыка. Размеры прихваток и их число должны отвечать требованиям подраздела 6.3.

Подогрев стыков при выполнений прихватки регламентирован требованиями, приведенными в подразделе 6.4.

- 8.1.5. Ручную аргонодуговую сварку производят сразу после выполнения прихватки. При комбинированной сварке стыки, в которых заварен корневой слой, должны быть полностью сварены во время той же рабочей смены.
- 8.1.6. Прихваченный стык по возможности следует полностью сваривать в приспособлении.

Корневой слой (первый проход) выполняется ручной аргонодуговой сваркой с использованием присадочной проволоки или без нее. Корневые слои стыков труб из углеродистой стали, а также стыки труб из стали других марок при зазоре более 0,5 мм должны свариваться с присадкой. Последующие слои шва выполняются с применением присадочной проволоки диаметром 1,6—3 мм. Марка проволоки выбирается по данным табл. 4.4.

- 8.1.7. Ручную аргонодуговую сварку нужно выполнять возможно короткой дугой на постоянном токе (70–100 A) прямой полярности вольфрамовым электродом диаметром 2–4 мм. Значение тока сварки уточняют при выполнении пробных стыков.
- 8.1.8. Зажигание и гашение дуги следует производить в разделке трубы или на уже наложенном шве на расстоянии 20–25 мм от его конца.

Подачу аргона необходимо прекращать спустя 5—8 с после обрыва дуги и в течение этого времени подавать аргон на кратер для защиты металла шва от воздействия воздуха.

8.1.9. Высота слоя (валика), выполненного ручной аргонодуговой сваркой, должна быть 2–4 мм. Примерное расположение слоев и валиков в сечении шва показано в табл. 8.1. Порядок наложения слоев (валиков) такой же, как при ручной дуговой сварке стыков труб аналогичного диаметра (см. рис. 7.3, *a*; 7.5, *a*; 7.13–7.14).

Предпочтительно, чтобы сварку стыков труб поверхностей нагрева котлов, собранных в блоки, выполняли одновременно два сварщика одним из способов, приведенных в п. 7.2.5.

- 8.1.10. При комбинированной сварке основную часть разделки (после наложения корневого слоя ручной аргонодуговой сваркой) следует заполнять дуговой сваркой в соответствии с требованиями, изложенными в подразделе 7.2.
- 8.1.11. Размеры выпуклости швов (независимо от метода сварки) должны соответствовать приведенным в п. 6.5.7.

8.2. Аргонодуговая сварка корневого слоя шва стыков толстостенных трубопроводов

- 8.2.1. Требования данного подраздела распространяются на сборку и ручную аргонодуговую сварку неплавящимся электродом корневого слоя шва неповоротных стыков труб при толщине стенки 10 мм и более, собранных без остающихся подкладных колец (с заполнением остальной части разделки ручной дуговой сваркой, механизированной в углекислом газе либо автоматической под слоем флюса).
- 8.2.2. Оборудование поста для ручной сварки в среде аргона корневого слоя шва стыков толстостенных трубопроводов должно соответствовать указанному в п. 8.1.2.
- 8.2.3. Конструкция сварных соединений должна отвечать требованиям табл. 6.2 (разделки типов Тр-2, Тр-6, Тр-7).
- 8.2.4. Собранные в приспособлении стыки прихватываются ручной аргонодуговой сваркой. Количество прихваток, а также требования к подогреву стыка приведены в подразделах 6.3 и 6.4.

Прихваточные швы выполняются без применения присадочной проволоки, кроме стыков труб из углеродистой стали, которые всегда накладываются с использованием присадочной проволоки, а также стыков труб из других сталей при зазоре более 0,5 мм. Применяется проволока диаметром 1,6—3 мм марки Св-08Г2С или Св-08ГС независимо от марки стали свариваемых труб.

8.2.5. Аргонодуговая сварка корневого слоя шва осуществляется в сборочном приспособлении сразу после прихватки стыка. Корневой слой (1–3 проходы) выполняется, как правило, с применением присадочной проволоки; в стыках с разделкой кромок типа Тр-7 первый проход может выполняться без присадочной проволоки, если зазор в стыке не превышает 0,5 мм.

Марка присадочной проволоки выбирается в зависимости от марки свариваемой стали по табл. 4.4. Сила тока 90—110 А при диаметре проволоки 1,6—3 мм.

Толщина стенки трубы, мм	Вертикальный стык	Горизонтальный стык
До 4*		
Свыше 4 до 7		
Свыше 7 до 10		

^{*} При толщине стенки до 2 мм все сечение следует сваривать аргонодуговой сваркой в один слой. Примечание: а – комбинированная сварка; б – ручная аргонодуговая сварка всего сечения.

120

Толщина корневого слоя, выполненного аргонодуговой сваркой, во избежание его прожога при наложении основного шва, должна быть не менее значений, приведенных в табл. 8.2.

- 8.2.6. Взаимное расположение горелки и проволоки при сварке корневого слоя вертикального и горизонтального стыков показано на рис. 8.1. Присадочная проволока 1 всегда располагается перед горелкой, которой одновременно с перемещением вдоль шва сообщают поперечные колебания амплитудой 3—4 мм. Присадочную проволоку следует вводить в ванну равномерно, перемещая ее впереди дуги. Конец проволоки должен постоянно находиться в сварочной ванне расплавленного металла.
- 8.2.7. Направление и порядок сварки корневого слоя шва вертикального и горизонтального неповоротных стыков показаны на рис. 8.2. Последующий участок должен перекрывать предыдущий на 10–20 мм. Сварку стыков труб диаметром более 219 мм следует вести обратноступенчатым способом при длине участка не более 250 мм.

Таблица 8.2
Толщина корневого слоя шва, выполненного

аргонодуговой сваркой в комбинированном стыке без подкладного кольца

Способ сварки первых слоев основного шва	Толщина корневого слоя (слоев), выпол- ненного аргонодуговой сваркой, мм, не менее
Ручная дуговая	
электродом диаметром 2,5 мм	3,5
электродом диаметром 3 мм	4,0
электродом диаметром 4 мм	5,0
Автоматическая аргонодуговая	4,0
Механизированная в углекислом газе и порошковой проволокой	5,0
Автоматическая под флюсом	6,0

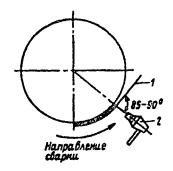


Рис. 8.1. Взаимное расположение присадочной проволоки (1) и горелки (2) при ручной аргонодуговой сварке корневого слоя шва стыка труб без подкладного кольца

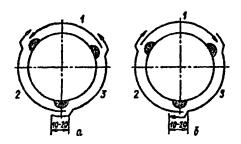


Рис. 8.2. Направление и порядок ручной аргонодуговой сварки корневого слоя вертикального (а) и горизонтального (б) неповоротных стыков: 1–3 – порядок выполнения участков шва

8.3. Приварка подкладного кольца к трубе аргонодуговой сваркой

- 8.3.1. Требования данного подраздела распространяются на стыки труб, собираемых и свариваемых на остающихся подкладных кольцах с разделкой любого типа (см. табл. 6.2 и рис. 7.1).
- 8.3.2. Кольцо плотно, но без натяга устанавливают в трубу; допускается зазор между кольцом и внутренней поверхно-

стью трубы не более 1 мм. Установленное кольцо прихватывают снаружи угловым швом длиной 10–20 мм, катетом 2,5—3 мм; количество прихваток, равномерно расположенных по периметру, для труб диаметром до 200 мм должно быть две, для труб большего диаметра — три-четыре. Прихватку (независимо от марки стали трубы и кольца) производят с применением присадочной проволоки Св-08Г2С, Св-08ГА-2 или Св-08ГС диаметром 1,6–3 мм.

- 8.3.3. Кольцо к трубе приваривают однослойным угловым швом катетом 3—4 мм при использовании присадочной проволоки марки Св-08Г2С, Св-08ГА-2 или Св-08ГС диаметром 1,6—3 мм независимо от марки стали трубы и кольца. Прихватку и приварку кольца к трубе производят без предварительного подогрева независимо от марки стали и толщины стенки трубы. Исключение составляют трубы из стали 15Х1М1Ф при толщине стенки более 10 мм; в этом случае конец трубы перед прихваткой и приваркой кольца подогревают до 200—250 °C газовым пламенем.
- 8.3.4. Кольцо к трубе приваривает один сварщик. Порядок наложения шва такой же, как при сварке корневого слоя неповоротных стыков труб соответствующего диаметра и пространственного положения (см. п. 8.2.7).
- 8.3.5. После приварки подкладного кольца шов осматривают для выявления возможных наружных дефектов и определения его размеров и формы.

9. АВТОМАТИЧЕСКАЯ АРГОНОДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ НЕПОВОРОТНЫХ СТЫКОВ ТРУБ

9.1. Сварка корневой части шва

9.1.1. Требования подраздела 9.1 распространяются на автоматическую сварку неплавящимся вольфрамовым электродом в среде аргона корневой части шва неповоротных вертикальных и горизонтальных стыков труб с толщиной стенки 4 мм и более из стали любой марки, приведенной в приложении 2.

Под корневой частью шва понимается часть шва, выполненная за первый проход автомата.

Остальная часть шва может выполняться автоматической аргонодуговой сваркой в соответствии с рекомендациями подраздела 9.3 или ручной дуговой, аргонодуговой или механизированной сваркой.

9.1.2. Для сварки корневой части шва должны применяться автоматы (см. приложение 13), обеспечивающие следующие операции:

предварительную продувку газовых магистралей защитным газом;

возбуждение дуги бесконтактным способом или путем контакта электрода с изделием при сварочном токе не более 20 А; регулируемый по времени прогрев участка начала сварки; равномерное или шаговое перемещение сварочной горелки с дугой вокруг стыка, в некоторых случаях (см. п. 9.1.10)

заварку кратера шва путем плавного снижения сварочного тока до величины, не превышающей 20 А;

требуется также подача присадочной проволоки:

обдув кратера защитным газом после гашения дуги.

- 9.1.3. Трубосварочный автомат должен быть снабжен источником питания сварочным током, аппаратурой управления с автоматическим циклом или с дистанционным управлением посредством выносного пульта.
- 9.1.4. Сварочный пост автоматической сварки должен быть оснащен баллоном с аргоном и редуктором-расходомером AP-10 или AP-40. Вместо редуктора-расходомера допускается использовать комплект, состоящий из кислородного редуктора БКО-50-4 и ротаметра типа PM с требуемым диапазоном измерения расхода газа.
- 9.1.5. Сборку и автоматическую аргонодуговую сварку стыков труб необходимо выполнять по технологической карте или технологической инструкции, разработанным применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учетом требований данного подраздела.

- 9.1.6. Конструкция сварных соединений должна соответствовать требованиям табл. 6.2 (разделки типов Тр-2, Тр-6, Тр-7).
- 9.1.7. Марку присадочной проволоки подбирают по данным табл. 4.4.
- 9.1.8. Сборку стыка под сварку следует осуществлять в сборочном приспособлении с помощью прихваток, выполняемых ручной аргонодуговой сваркой, или без прихваток. После установки прихваток приспособление удаляется. Допускается производить прихватки с помощью автомата, которым будет производиться сварка.

Прихватку стыков труб типов Тр-2 и Тр-6 из стали любой марки, а также всех типов соединений труб из стали марок 12X18H12T и 12X18H10T следует выполнять с присадочной проволокой или расплавляемой вставкой круглого сечения.

Смещение кромок с внутренней стороны не должно превышать 0,5 мм.

9.1.9. Сварку корневой части шва рекомендуется выполнять в импульсном режиме с непрерывным или шаговым перемещением электрода. Допускается сварка стационарной дугой.

Сварку корневой части шва можно выполнять по слою активирующего флюса марок ВС-2ЭК (для стыков труб из сталей перлитного класса) и ВС-31К (для стыков труб из сталей аустенитного класса).

9.1.10. Сварку корневого шва стыковых соединений труб типов Тр-2 и Тр-6 независимо от марки стали, а также соединений труб из стали марок 12X18H12T и 12X18H10T и замыкающих участков шва длиной 20–50 мм в стыках труб из углеродистых сталей следует выполнять с присадочной проволокой. Допускается сварка корневого шва с расплавляемой вставкой, которая устанавливается при сборке стыка. При сварке замыкающих участков шва стыков труб из углеродистых сталей присадочную проволоку можно подавать вручную.

В остальных случаях сварку корневой части шва рекомендуется выполнять без присадки.

- 9.1.11. Вертикальные стыки труб диаметром до 159 мм и горизонтальные стыки труб любого диаметра рекомендуется сваривать за полный оборот горелки вокруг стыка, а вертикальные стыки диаметром более 159 мм за два полуоборота снизу вверх («на подъем»). Начинать и заканчивать сварку вертикальных стыков, выполняемых за полный оборот горелки, следует на участке шва, свариваемого «на спуск».
- 9.1.12. Сварку корневой части шва стыков труб из стали аустенитного класса следует выполнять с поддувом аргона внутрь трубы для защиты обратной стороны шва от воздействия воздуха. С целью уменьшения расхода газа на поддув рекомендуется устанавливать на расстоянии 50—100 мм от стыка заглушку из картона или водорастворимой бумаги.

Технология и организация работ по поддуву разрабатывается для каждого конкретного случая в зависимости от расположения стыков, диаметра труб, используемого для поддува оборудования. При этом следует руководствоваться технологическими указаниями по поддуву защитного газа для защиты обратной стороны шва при сварке неповоротных стыков трубопроводов РДИ 42-006—85.

Вместо поддува защитного газа можно применить защитные флюс-пасты отечественного и зарубежного производства.

9.1.13. Ориентировочные режимы автоматической сварки корневой части шва приведены в табл. 9.1.

Таблица 9.1

Ориентировочные режимы автоматической аргонодуговой импульсной сварки неплавящимся электродом корневой части шва стыков труб

Толщина корневой части шва, мм	Время прогре- ва, с	Ток им- пульса, А	Длитель- ность им- пульса, с	Длитель- ность пау- зы, с	Скорость сварки, мм/с
1,0	0,5	80-95	0,10-0,15	0,15-0,25	4,4-5,0
1,5	1,5	90-95	0,10-0,15	0,15-0,25	3,1-3,3

Толщина корневой части шва, мм	Время прогре- ва, с	Ток им- пульса, А	Длитель- ность им- пульса, с	Длитель- ность пау- зы, с	Скорость сварки, мм/с
2,0	1,8	105–110	0,20-0,25	0,25-0,30	2,8-3,3
2,5	2,0	120–125	0,50-0,60	0,40-0,50	2,2-2,5
3,0	2,5	140–145	0,60-0,70	0,70-0,80	1,9–2,2
3,5	3,0	155–165	0,75–0,90	0,70-0,80	1,4–1,9

Примечание. Во всех случаях ток паузы 10–15 **А**, длина дуги – 1,0–1,5 мм.

9.2. Сварка стыков труб без разделки кромок

9.2.1. Требования подраздела 9.2 распространяются на сборку и автоматическую аргонодуговую сварку неплавящимся электродом неповоротных вертикальных и горизонтальных стыков труб диаметром до 159 мм с толщиной стенки до 4 мм без разделки кромок из стали любой марки, приведенной в приложении 2.

При использовании активирующего флюса (см. п. 9.1.9) разрешается без разделки кромок выполнять сварку вертикальных стыков труб с толщиной стенки до 5 мм, горизонтальных стыков — с толщиной стенки до 6 мм.

Сварку можно выполнять в двухгазовой защитной среде с использованием специальной горелки, из сопла которой вытекают два потока газа: внутренний поток (аргон), защищающий электрод и дугу, и наружный кольцевой поток (углекислый газ), защищающий сварочную ванну.

Примечание. Сварка стыков труб толщиной более 4 мм без скоса кромок для объектов Минэнерго России допускается при условии согласования ПТД с ЗАО «Прочность МК», для других объектов — с любой специализированной научно-исследовательской организацией в области сварки, приведенной в приложениях к правилам Госгортехнадзора России.

9.2.2. Конструкция сварных соединений труб должна соответствовать типу Тр-1 (см. табл. 6.2).

На внутренних кромках свариваемых деталей рекомендуется выполнять фаску $0,3^{+0,2} \times 45^{\circ}$ для улучшения формирования обратного валика и выявления непровара в корне шва с помощью радиографического контроля.

- 9.2.3. Сборку и автоматическую аргонодуговую сварку стыков труб без разделки кромок необходимо выполнять по технологической карте или технологической инструкции, разработанным применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учетом требований данного подраздела, а также пп. 9.1.2–9.1.4, 9.1.7–9.1.13.
- 9.2.4. После выполнения первого прохода, обеспечивающего формирование обратной стороны шва, выполняется второй проход с подачей присадочной проволоки, формирующей выпуклость шва.

Сварку этого слоя шва рекомендуется выполнять с поперечным колебанием электрода.

В случае применения автомата без узла подачи присадочной проволоки следует формировать выпуклость шва по методу автоопрессовки или за счет выполнения прохода с помощью ручной дуговой сварки с присадкой в соответствии с требованиями раздела 8 либо с использованием кольцевой расплавляемой вставки из присадочной проволоки.

9.2.5. При выполнении второго прохода следует использовать проволоки, приведенные в табл. 4.4.

9.3. Заполнение разделки стыка

- 9.3.1. Требования подраздела 9.3 распространяются на автоматическую аргонодуговую сварку стыков труб, указанных в п. 9.1.1, при заполнении разделки кромок после сварки корневой части шва в соответствии с требованиями подраздела 9.1.
- 9.3.2. Применяемые для сварки автоматы должны обеспечивать операции, указанные в п. 9.1.2, и, кроме того, подачу присадочной проволоки и поперечные колебания электрода либо синхронные колебания электрода и проволоки. Допускается сварка без поперечных колебаний импульсной дугой. Остальное оборудование должно соответствовать рекомендациям пп. 9.1.3 и 9.1.4.

- 9.3.3. Заполнение разделки автоматической аргонодуговой сваркой необходимо выполнять по технологической карте или технологической инструкции, разработанной применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учет эм требований данного подраздела.
- 9.3.4. При сварке второго прохода (после сварки корневой части шва) параметры режима следует выбирать такими, чтобы исключить сквозное проплавление корневого слоя. Толщина наплавленного слоя при втором проходе должна составлять 1,5–2,0 мм, последующих слоев 3–4 мм.
- 9.3.5. Заполнение разделки рекомендуется выполнять за два полупрохода «на подъем». Допускается сварка «за полный оборот» при толщине наплавленного слоя не более 2 мм.

Требования к подогреву стыка приведены в подразделе 6.4.

- 9.3.6. Для заполнения разделки применяется присадочная проволока диаметром 1,2–2 мм. Ее марка подбирается по данным табл. 4.4.
- 9.3.7. При выполнении облицовочного валика сварочный ток должен быть уменьшен по сравнению с током, на котором заполнялась разделка, на 15–20%.

10. ГАЗОВАЯ (АЦЕТИЛЕНОКИСЛОРОДНАЯ) СВАРКА ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

10.1. Требования раздела 10 распространяются на газовую (ацетиленокислородную) сварку неповоротных стыков труб из углеродистых и низколегированных сталей диаметром не более 150 мм при толщине стенки не более 8 мм*.

для газопроводов при толщине стенки труб не более 5 мм.

5 Сварка... 129

^{*} Для технологических трубопроводов, на которые распространяются ПБ 03-108-96, и для газопроводов, подпадающих под действие СНиП 3.05.02-88 (Изменение №1), газовая сварка может применяться в следующих случаях:

для технологических трубопроводов рабочим давлением не более 10 МПа (100 кгс/см²) условным диаметром не более 80 мм и толщиной стенки не более 3,5 мм, изготовленных из углеродистых и низколегированных конструкционных (неподкаливающихся) сталей, а также условным диаметром не более 40 мм и толщиной стенки не более 5 мм, изготовленных из низколегированных теплоустойчивых сталей (15ХМ, 12Х1МФ и др.);

10.2. Газовую сварку следует применять преимущественно для стыков трубопроводов горючего газа, дренажных систем, контрольно-измерительных приборов и автоматики, отбора проб, кислотных промывок, малоответственных трубопроводов различного назначения. Для стыков труб поверхностей нагрева котлов и трубопроводов, на которые распространяются правила Госгортехнадзора России, газовая сварка допускается в исключительных случаях, при этом питание сварочных постов ацетиленом должно осуществляться из баллонов. Стыки труб из сталей 15Х1М1Ф, 12Х2М1, 12Х2МФСР и 12Х2МФБ выполнять газовой сваркой не разрешается.

Примечание. При ремонте труб поверхностей нагрева и трубопроводов, на которые распространяются правила Госгортехнадзора России, разрешается для газовой сварки использовать ацетилен, получаемый на месте в ацетиленовых генераторах, при условии проверки его качества на пробных стыках.

- 10.3. Конструкция сварного соединения должна соответствовать требованиям табл. 6.2 (разделки типов Тр-1 и Тр-2).
- 10.4. Марку присадочной проволоки подбирают по марке свариваемой стали в соответствии с данными табл. 4.4.

Примечание. Во избежание образования свищей стыки труб из стали 20 водяных экономайзеров и нижней радиационной части прямоточных котлов с рабочим давлением более 6 МПа (60 кгс/см²) следует сваривать с присадочной проволокой Св-08МХ.

- 10.5. Собранные стыки труб необходимо прихватывать в одной-двух точках в соответствии с требованиями, приведенными в подразделе 6.3.
- 10.6. Для прихватки используются та же присадочная проволока и тот же наконечник горелки, которые применяются для сварки данного стыка. Прихватки должны быть в дальнейшем полностью перекрыты основным швом. Прихватывать стыки должен сварщик, который будет сваривать стык.
- 10.7. Трубы при толщине стенки менее 3 мм сваривают горелкой с наконечником № 1 или № 2, при толщине стенки 3,0—4,5 мм горелкой с наконечником № 2 или № 3, а при толщине

- свыше 4,5 мм горелкой с наконечником № 3 или № 4. Трубы, имеющие толщину стенки до 4,5 мм, сваривать горелкой с наконечником № 3 или № 4 при повышенном расходе газа могут лишь опытные сварщики, выполняющие шов достаточно быстро.
- 10.8. Диаметр присадочной проволоки подбирают в зависимости от толщины свариваемого металла и способа сварки. При правом способе сварки стыков труб со стенкой толщиной до 3 мм необходимо применять проволоку диаметром 2 мм, толщиной более 3 до 8 мм диаметром 3 мм; при левом способе следует использовать проволоку диаметром 3 мм для сварки стыков труб с толщиной стенки до 8 мм.
- 10.9. Сварку ведут участками длиной 10—15 мм. Сначала этот участок пролуживают, т. е. производят сплавление кромок труб (обычно без добавления присадки), а потом на него накладывают первый слой шва. Затем то же самое выполняют на следующем участке и т. д. При толщине стенки труб до 4 мм сваривают в один слой, при большей толщине в два. Второй слой следует выполнять лишь по окончании сварки корневого слоя на всем периметре стыка. Сварщик перед сваркой и прихваткой стыка должен прогреть его сварочной горелкой для выравнивания температуры металла. Подогрев необходим и после вынужденных перерывов в сварке. При сварке первого слоя следует обеспечить проплавление прихваток.

Примечание. В случае прихватки стыка труб в одной точке сварку надо начинать сразу после наложения прихватки с диаметрально противоположного участка стыка.

- 10.10. Последовательность наложения слоев такая же, как при ручной дуговой сварке аналогичных стыков (см. рис. 7.3, *a* и 7.5, *a*).
- 10.11. Стыки труб поверхностей нагрева в монтажных блоках должны сваривать одновременно два сварщика в последовательности, изложенной в п. 7.2.5 применительно к ручной дуговой сварке.
- 10.12. Сварку труб следует выполнять нормальным (восстановительным) пламенем при соотношении кислорода и аце-

тилена в газовой смеси, равном 1,1–1,25. При сварке стыков труб из легированных сталей необходимо особенно следить за составом пламени и не допускать избытка ацетилена.

- 10.13. При сварке труб из хромомолибденовых и хромомолибденованадиевых сталей в целях уменьшения выгорания легирующих элементов основного и присадочного материалов необходимо обеспечивать минимальную длительность пребывания сварочной ванны в расплавленном состоянии.
- 10.14. В процессе сварки конец присадочной проволоки все время должен находиться в зоне пламени во избежание насыщения шва кислородом и азотом воздуха.
- 10.15. Во время сварки стыка нельзя допускать длительного перерыва в работе до заполнения всей разделки. При вынужденных перерывах (перехват горелки, переход сварщика на другую сторону стыка и т. п.) и по окончании сварки пламя горелки во избежание образования трещин, усадочных раковин и пор следует отводить от расплавленного металла постепенно.

В процессе сварки и охлаждения стыка из низколегированной стали нельзя допускать сквозняков внутри труб, для чего их концы следует закрывать пробками.

11. МЕХАНИЗИРОВАННАЯ СВАРКА В УГЛЕКИСЛОМ ГАЗЕ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ ТРУБОПРОВОДОВ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ*

11.1. Требования настоящего раздела распространяются на механизированную сварку в углекислом газе стыков труб из углеродистых и низколегированных конструкционных сталей независимо от диаметра труб при толщине стенки 3 мм и более. Механизированной сваркой можно сваривать стыки трубопрово-

^{*} Настоящий раздел распространяется также на механизированную сварку в смеси углекислого газа с аргоном (до 25% аргона). Далее в тексте под сваркой в углекислом газе подразумевается как сварка в чистом CO₂, так и с добавкой аргона.

дов на подкладных кольцах (разделки типов Тр-3в и Тр-3д по табл. 6.2) независимо от рабочего давления среды и стыки трубопроводов без подкладных колец (разделки типов Тр-2, Тр-6) при рабочем давлении среды не более 4 МПа (40 кгс/см²). При сварке без остающихся подкладных колец трубопроводов с толщиной стенки 17 мм и более корень шва необходимо выполнять аргонодуговой сваркой неплавящимся электродом.

Механизированную сварку в углекислом газе можно также применять при изготовлении сегментных отводов и тройников и при вварке штуцеров в трубопроводы низкого давления.

11.2. В качестве источников питания дуги можно использовать однопостовые сварочные выпрямители ВС-300 Б, ВДГ-303-4, ВДУ-506, ВДУ-506С и другие с жесткой вольт-амперной характеристикой. Сварка выполняется на токе обратной полярности с помощью переносных шланговых полуавтоматов типов:

ПДГ-312-4 (с источником ВДГ-303-4);

ПДГ-508 (с источником ВДУ-506);

А-547 (с источником ВС-300Б);

ПДГО-508 (с источником ВДУ-506С);

ПДГ-151 в комплекте с источником питания;

ПДГ-251 в комплекте с источником питания и др.

- 11.3. В состав установки (поста) для механизированной сварки в углекислом газе входят механизм подачи сварочной проволоки, осущитель газа, держатель со шлангом, катушка для электродной проволоки, подогреватель газа, баллон с углекислым газом (или система подачи углекислого газа при централизованном питании), источник сварочного тока с встроенным блоком управления, редуктор У-30. При сварке в смеси углекислого газа и аргона в состав сварочного поста должны входить, кроме того, баллон с аргоном, смеситель УГС-1 и соответствующие шланги и провода.
- 11.4. При сборке и прихватке стыков следует соблюдать требования, приведенные в подразделах 6.2 и 6.3. Необходимость и температура подогрева стыка определяются в соответствии с данными подраздела 6.4.

- 11.5. Прихваточные швы могут выполняться механизированной сваркой в углекислом газе либо ручной дуговой сваркой электродами диаметром не более 3 мм. При выполнении прихваток механизированной сваркой присадочная проволока должна быть той же марки, какая будет применяться при сварке корневого слоя шва. При выполнении прихваток ручной дуговой сваркой марки электродов следует выбирать по марке основного металла в соответствии с требованиями табл. 4.1.
- 11.6. На стыках труб, собираемых без подкладных колец, число и размер прихваток должны соответствовать требованиям, приведенным в подразделе 6.3. Прихваточные швы должны плавно переходить с обеих сторон к внутренней поверхности трубы и разделке кромок; при необходимости такой переход обеспечивается обработкой шва абразивным инструментом.

Сборку и прихватку стыков следует производить в сборочных приспособлениях (см. приложение 11) или на сборочносварочных стендах, обеспечивающих соосность стыкуемых элементов, а также необходимый зазор между ними. На потолочном участке вертикального неповоротного стыка прихватка не ставится.

Стыки с подкладными кольцами собирают в последовательности, изложенной в подразделе 6.2.

- 11.7. Марка присадочной проволоки подбирается с учетом марки основного металла по данным табл. 4.4. Диаметр проволоки должен быть 1,2 мм. Для сварки вертикальных швов в нижнем положении и горизонтальных швов допускается применение проволоки диаметром 1,6 мм.
- 11.8. Неповоротные вертикальные стыки труб свариваются в последовательности, приведенной в п. 7.1.9. В стыках с подкладным кольцом корневой слой накладывается в процессе сборки стыка в соответствии с требованиями, приведенными в подразделе 6.2. В вертикальных стыках без подкладного кольца корневой слой необходимо накладывать по схеме, приведенной на рис. 11.1.

Если корневой слой накладывают два сварщика, один заваривает из точки в потолочном положении участок 1 в направ-

лении снизу вверх, а другой в это время – последовательно участки 2, 3 и 4. Если корневой слой сваривает один сварщик, последовательность наложения участков должна соответствовать цифрам на рис. 11.1.

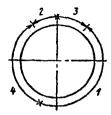


Рис. 11.1. Последовательность (1–4) наложения корневого слоя в вертикальном неповоротном стыке без подкладного кольца механизированной сваркой в углекислом газе

В стыках труб диаметром более 630 мм, свариваемых без подкладных колец, рекомендуется корневой слой накладывать изнутри трубы ручной дуговой, аргонодуговой или механизированной сваркой в углекислом газе. Обратная сторона корневого слоя (со стороны раскрытия шва) перед наложением основного шва должна быть зачищена абразивным инструментом или металлической шеткой.

Положение горелки при сварке вертикального участка неповоротного стыка схематически показано на рис. 11.2.

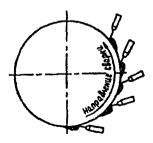


Рис. 11.2. Положение горелки при механизированной сварке в углекислом газе вертикального неповоротного стыка

- 11.9. Горизонтальные стыки труб свариваются в последовательности, указанной в пп. 7.1.11 и 7.1.12.
- 11.10. Поворотные стыки следует сваривать в последовательности, указанной в пп. 7.1.14—7.1.16. При сварке стыка с поворотом труб на 360° следует использовать вращатель (манипулятор), обеспечивающий равномерное вращение трубы, соответствующее скорости сварки. Сварщик не перемещает держатель (горелку) вдоль швов, а ведет сварку на одном участке, отстоящем от вертикали на 30—35° в сторону, обратную направлению вращения трубы. При отсутствии вращателя единовременный угол поворота труб должен быть 60—110° (в зависимости от диаметра трубы), чтобы наложение шва происходило преимущественно в нижнем и вертикальном положениях.
- 11.11. Высота (толщина) слоя или валика должна быть 5—6 мм. Примерное расположение слоев и валиков в поперечном сечении шва приведено на рис. 11.3.

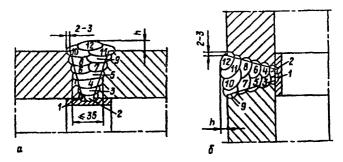


Рис. 11.3. Примерное расположение слоев и валиков по сечению шва вертикального неповоротного (а) и горизонтального (б) стыков труб с разделкой Тр-3в (угол скоса 15°), выполненных механизированной сваркой в среде углекислого газа: 1–12 – последовательность наложения слоев (валиков) шва

 11.12. Ориентировочные режимы сварки неповоротных стыков (вертикальных и горизонтальных) приведены в табл. 11.1.

Ориентировочные режимы механизированной сварки в углекислом газе неповоротных стыков трубопроводов

Режим сварки	Диметр про- волоки, мм	Напряжение дуги, В	Ток, А
Вертикального стыка:			
1	1,2	19–20	120-140
2	1,2	20–22	140-180
Горизонтально- го стыка:			
3	1,2	22–23	140–160
4	1,2	24–25	180–200
5	1,6	24–25	240–260
6	1,6	25–26	260–280

Примечание. Расход углекислого газа должен составлять 900–1200 п/ч.

Режим сварки вертикального неповоротного стыка в зависимости от положения свариваемого участка (рис. 11.4) и конструкции стыка следует выбирать по данным табл. 11.2.

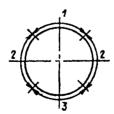


Рис. 11.4. Схема расположения участков шва при сварке в углекислом газе вертикального неповоротного стыка: 1 — нижнее, 2 — вертикальное, 3 — потолочное положения сварки

Корневой слой горизонтального стыка в случае применения проволоки диаметром 1,2 мм сваривают в режиме 3, за исключением мест переварки прихваток и замков швов, которые следует выполнять в режиме 4, а в случае применения проволоки диаметром 1,6 мм — соответственно в режимах 5 и 6.

Вертикальные неповоротные стыки труб диаметром до 219 мм сваривают в режиме, соответствующем режиму 1 (см. табл. 11.1).

Вертикальные неповоротные стыки диаметром более 219 мм сваривают два сварщика, при этом один полуавтомат настраивают на режим 1, а второй — на режим 2; сварщики обмениваются держателем в зависимости от того, какой участок стыка они сваривают.

Таблица 11.2

Режимы механизированной сварки в углекислом газе вертикального неповоротного стыка труб

Характеристика стыка	Слой шва		зарки (табл. 11.1) оложении шва
(по табл. 6.2)		нижнем вертикальног	
Без подкладного кольца (разделки Тр-2 и Тр-6)	Корневой Остальные	2 2	1 2
На подкладном кольце (разделки	Первый корневой	1	1
Тр-3в и Тр-3д)	Второй корневой Остальные	2	1 2

Примечание. Сварка в потолочном положении выполняется в режиме 1.

11.13. Режимы сварки вертикальных поворотных стыков труб должны отвечать требованиям табл. 11.1 и 11.2 для нижнего положения шва.

12. АВТОМАТИЧЕСКАЯ СВАРКА ПОД ФЛЮСОМ ПОВОРОТНЫХ СТЫКОВ ТРУБ

- 12.1. Требования раздела 12 распространяются на автоматическую сварку под флюсом поворотных (кольцевых) стыков труб диаметром более 200 мм при толщине стенки 4 мм и более из углеродистых и низколегированных конструкционных сталей, выполняемую на заводе или на сборочной площадке.
- 12.2. Установка для автоматической сварки под флюсом поворотных стыков труб комплектуется роликовым стендом с механизмом для вращения свариваемого изделия, сварочной головкой, аппаратурой управления (отдельного исполнения или встроенной в источник питания) и источником питания. При сварке секторных отводов вместо роликового стенда в качестве вращающего устройства следует применять манипулятор, оборудованный приспособлением для крепления отвода (наиболее часто используют манипуляторы М11070, М11080). В качестве сварочной головки могут быть использованы подвесная головка любого типа, сварочный трактор или шланговый полуавтомат. В случае применения сварочного трактора его устанавливают неподвижно на трубе в зоне стыка.

Автоматическую сварку под флюсом допускается производить как на переменном, так и на постоянном токе обратной полярности.

- 12.3. Сборку и автоматическую сварку под флюсом необходимо выполнять по технологическому процессу, разработанному применительно к конкретно свариваемым изделиям, сборочно-сварочной оснастке и сварочному оборудованию с учетом требований, изложенных в данном разделе.
- 12.4. Конструкцию стыка следует выбирать по данным табл. 6.2 (разделки Тр-1, Тр-2, Тр-3б).
- 12.5. Для автоматической сварки под флюсом марку присадочной проволоки и флюса подбирают в зависимости от марки свариваемой стали по данным табл. 4.4.
- 12.6. Собранные стыки необходимо прихватывать ручной дуговой сваркой углеродистыми электродами диаметром не

более 3 мм, ручной аргонодуговой или механизированной сваркой в углекислом газе. Число и размеры прихваток должны соответствовать требованиям подраздела 6.3.

- 12.7. Независимо от конструкции стыков (с подкладным кольцом или без него) один или два корневых слоя следует выполнять ручной дуговой либо аргонодуговой сваркой или механизированной сваркой в углекислом газе. Толщина корневого слоя (слоев) должна быть в стыках с подкладным кольцом не менее 4 мм, без подкладного кольца не менее 6 мм. На стыках труб диаметром более 800 мм, собираемых без подкладных колец, а также на стыках секторных отводов независимо от их диаметра корневой слой выполняют внутри трубы в виде подварочного шва. Присадочный материал и технология сварки корневых слоев должны отвечать требованиям, изложенным в разделах 4 и 11 и подразделе 7.1.
- 12.8. Мундштук сварочной головки необходимо устанавливать таким образом, чтобы электрод был смещен от верхней точки (зенита) в сторону, обратную направлению вращения трубы. Размер смещения электрода от верхней точки зависит от диаметра свариваемых труб $\mathcal{L}_{\rm H}$ и должен быть следующим:

<i>Д</i> н, мм	200-400	> 400-800	> 800
Смещение, мм	15-20	30-50	60-70

- 12.9. Слой флюса в зоне сварки должен быть 40–50 мм. Для удержания флюса на цилиндрической поверхности трубы следует применять флюсовые коробки, плотно прилегающие к ее поверхности.
- 12.10. Стыки труб толщиной до 12 мм можно выполнять автоматической сваркой под флюсом за один проход (в один слой), при большей толщине шов накладывается за два прохода и более.
- 12.11. Ориентировочные режимы автоматической сварки под флюсом поворотных стыков труб (по предварительной подварке) даны в табл. 12.1. В каждом конкретном случае режим должен уточняться при сварке пробного стыка.

Ориентировочные режимы автоматической сварки под флюсом поворотных стыков труб из углеродистой и кремнемарганцовистой стали

Толщина стенки трубы, мм	Диаметр элек- тродной про- волоки, мм	Ток, А	Напряжение дуги, В	Скорость сварки, м/ч
4	2	275–300	26–28	48-50
6	2	400-425	26–28	38–40
	4	450-475	30–34	34-46
8	4	450-600	30–36	34–37
	5	500–675	38–40	28–32
10	4	450–650	30–36	34–36
	5	500-700	38–40	2832
12	4	450-700	30–38	34–36
	5	500-750	38–40	28–32

13. ОСОБЕННОСТИ СВАРКИ ТРУБ ИЗ АУСТЕНИТНЫХ СТАЛЕЙ

13.1. Требования раздела 13 распространяются на ручную дуговую, ручную и автоматическую аргонодуговую и комбинированную сварку стыков пароперегревательных и других труб малого диаметра (менее 100 мм) со стенкой толщиной до 10 мм из аустенитных сталей марок 12X18H12T, 12X18H10T, 10X13Г12БС2H2Д2 (ДИ 59)*.

Для стыков труб с толщиной стенки до 5 мм предпочтительнее ручная аргонодуговая сварка, с большей толщиной – комбинированная или ручная дуговая электродом диаметром 2,5–3,0 мм.

^{*} При автоматической аргонодуговой сварке следует учитывать требования раздела 9.

Аргонодуговую сварку корневой части шва следует производить с поддувом аргона внутрь трубы или с использованием флюс-пасты в соответствии с требованиями п. 9.1.12.

13.2. Сварка стыков труб из аустенитных сталей должна производиться с минимальным тепловложением. С этой целью следует:

ручную дуговую сварку выполнять электродами диаметром не более 3 мм, при этом сила тока должна быть для электродов диаметром 2,5 мм 60–75 A, диаметром 3 мм – 80–90 A;

ручную аргонодуговую сварку выполнять вольфрамовым электродом диаметром 2—3 мм при токе 70—100 А;

ручную дуговую сварку вести почти без поперечных колебаний электрода узкими валиками шириной не более трех диаметров электрода; при диаметре электрода 2,5 мм высота валика должна быть 2,5–4 мм, при диаметре электрода 3 мм высота валика — 3–5 мм:

при ручной аргонодуговой сварке валики накладывать шириной не более 6 мм, а высотой не более 3 мм;

при выполнении многопроходных швов наложение каждого последующего валика производить только после остывания металла шва и околошовной зоны (по 20–25 мм в каждую сторону от кромки разделки) до температуры ниже 100 °C.

13.3. Приварка к трубам из аустенитных сталей сборочных приспособлений и других временных вспомогательных деталей, в том числе сварочного провода, не допускается (исключение составляет случай, оговоренный в п. 6.2.3).

Вторичный провод к трубе следует присоединять с помощью хомута или струбцины.

13.4. Во избежание образования мелких поверхностных трещин нельзя допускать попадания на поверхность труб из аустенитных сталей брызг расплавленного металла или шлака. С этой целью поверхности свариваемых труб необходимо на длине не менее 100 мм от свариваемого стыка покрывать асбестовой тканью или асбестовым картоном либо наносить

слой эмульсии КБЖ*, или смеси каолина (мела) с жидким стеклом, либо препарата «Дуга-1».

- 13.5. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).
- 13.6. Оборудование поста ручной аргонодуговой сварки должно отвечать требованиям, изложенным в п. 8.1.2, поста автоматической аргонодуговой сварки в пп. 9.1.2–9.1.4.
- 13.7. Марка электродов для ручной сварки и марка присадочной проволоки для ручной и автоматической аргонодуговой сварки подбираются в соответствии с рекомендациями, приведенными в табл. 4.1 и 4.4. Диаметр проволоки для ручной аргонодуговой сварки должен быть 1,6–2 мм.
- 13.8. При сборке стыков труб необходимо выполнять требования подраздела 6.2.
- 13.9. Собранный в приспособлении стык должен быть прихвачен в одном или двух местах с соблюдением требований, изложенных в подразделе 6.3. Если вертикальный стык прихватывается в одном месте, то прихватка располагается в верхней его части, если в двух, то на вертикальных его участках в диаметрально противоположных точках; на горизонтальном стыке прихватки могут располагаться в любом месте, но в диаметрально противоположных точках окружности стыка.

Для наложения прихваточных швов ручным дуговым способом должны использоваться электроды той же марки, какие будут применены для сварки стыка. Прихватку аргонодуговым способом следует выполнять без присадочной проволоки; присадочная проволока применяется только в случае, если зазор в стыке превышает 0,5 мм.

13.10. При закреплении стыка одной прихваткой необходимо сразу после прихватки заварить корневой слой по всему периметру, начиная сварку со стороны, противоположной прихватке.

^{*} Состав: 50–150 г сульфитно-спиртовой барды КБЖ, 20–30 г технического мыла, 15–30 г кальцинированной соды (на 1 л воды). Эту смесь растворяют в воде при 70 °С и наносят на поверхность трубы в два слоя.

- 13.11. Ручная аргонодуговая сварка корневого слоя может выполняться с присадочной проволокой или без нее. При зазоре в стыке более 0,5 мм необходимо применять присадочную проволоку диаметром 1,6–2 мм.
- 13.12. Последовательность наложения слоев и валиков и их расположение в сечении шва должно быть таким же, как при сварке труб аналогичных размеров из углеродистой и низколегированной стали (см. подразделы 7.2 и 8.1).

14. ОСОБЕННОСТИ СВАРКИ ТРУБ ИЗ МАРТЕНСИТНЫХ И МАРТЕНСИТНО-ФЕРРИТНЫХ ХРОМИСТЫХ СТАЛЕЙ

14.1. Требования раздела 14 распространяются на сварку стыков пароперегревательных и других труб малого диаметра (менее 100 мм) при толщине стенки до 10 мм из мартенситной стали 10Х9МФБ (ДИ 82-Ш) и мартенситно-ферритной стали 12Х11В2МФ ручным дуговым, ручным аргонодуговым и комбинированным способами.

Для стыков труб с толщиной стенки до 5 мм предпочтительна ручная аргонодуговая сварка, при большей толщине стенки – комбинированная.

- 14.2. Оборудование поста для ручной аргонодуговой сварки должно отвечать требованиям, приведенным в п. 8.1.2.
- 14.3. Прихватка и сварка стыков труб должна выполняться с использованием сварочных материалов, приведенных в табл. 4.1 (электроды для ручной дуговой сварки) и табл. 4.4 (сварочная проволока для ручной аргонодуговой сварки). Для ручной дуговой сварки следует применять электроды диаметром не более 3 мм, для ручной аргонодуговой сварки проволоку диаметром 1,6—2 мм.
- 14.4. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).
- 14.5. При сборке и прихватке стыков труб необходимо руководствоваться требованиями подразделов 6.2 и 6.3.

14.6. Прихватка и сварка ручным дуговым способом стыков труб из стали 12X11B2MФ с использованием аустенитных электродов и проволоки должна выполняться без подогрева, аргонодуговым способом с использованием высоколегированной проволоки марок Св-10X11HBMФ и Св-12X11HMФ – с подогревом стыка до температуры 300—350 °C.

Прихватка и сварка ручным дуговым и аргонодуговым способами стыков труб из стали 10Х9МФБ с использованием электродов и проволоки марок, приведенных в табл. 4.1 и 4.4, должны выполняться без подогрева.

Прихватку и сварку корневого слоя ручным аргонодуговым способом следует выполнять с применением присадочной проволоки.

- 14.7. Последовательность наложения слоев и валиков и их расположение в сечении шва должны быть такими же, как при сварке труб аналогичных размеров из углеродистой и низколегированной стали (см. подразделы 7.2 и 8.1).
- 14.8. Стыки труб из стали 10Х9МФБ (ДИ 82-Ш) подвергаются отпуску при температуре 750 °C в течение 0,5 ч.

15. ОСОБЕННОСТИ СВАРКИ ТРУБНЫХ ЭЛЕМЕНТОВ ИЗ РАЗНОРОДНЫХ СТАЛЕЙ

15.1. Требования раздела 15 распространяются на ручную дуговую и аргонодуговую сварку элементов из сталей одного структурного класса, но разного легирования и из сталей разных структурных классов (перлитного с мартенситным и мартенситно-ферритным, перлитного с аустенитным, мартенситного и мартенситно-ферритного с аустенитным), при этом сварные соединения сталей разных структурных классов рассматриваются применительно к трубам поверхностей нагрева и трубопроводам диаметром не более 100 мм и толщиной стенки не более 10 мм, которые встречаются в монтажной и ремонтной практике.

15.2. Конструкцию сварного соединения следует выбирать по табл. 6.2 в зависимости от способа сварки, диаметра и толщины стенки свариваемых труб.

При сварке аустенитной стали с перлитной, мартенситной и мартенситно-ферритной соединяемые встык элементы должны иметь одинаковую толщину. Если соединяются элементы разной толщины, то должна быть произведена обработка более толстого элемента в соответствии с рекомендациями пл. 6.1.6 или 6.1.7.

- 15.3. Если стык элементов из сталей разного структурного класса сваривается на остающемся подкладном кольце, то кольцо следует изготовлять из менее легированной свариваемой стали или из стали того же структурного класса, к которому относится металл корня шва. Подкладное кольцо для соединений элементов из сталей перлитного класса должно изготавливаться в соответствии с требованиями п. 6.2.10.
- 15.4. Марку присадочного материала следует выбирать по данным табл. 15.1.
- 15.5. Сварка сталей разных структурных классов с использованием аустенитного присадочного материала выполняется без предварительного подогрева стыка с минимальным тепловложением в соответствии с рекомендациями раздела 13.

Сварка разнородных сталей перлитного класса выполняется с подогревом, если таковой требуется, согласно данным табл. 6.3 для более легированной из свариваемых сталей.

Сварка должна выполняться с соблюдением технологических требований, изложенных в соответствующих разделах РД.

15.6. Сварные соединения сталей разных структурных классов, на которые распространяется настоящий раздел (толщиной не более 10 мм), термической обработке не подвергаются (кроме стыков группы 21 по табл. 15.1). Сварные соединения сталей одного структурного класса, но разного легирования, а также соединения группы 21 подвергаются термообработке в соответствии с требованиями табл. 17.1.

	Группа основных ма-	Сталь свариваемых труб	Присадочный материал		
	териалов по ПБ 03-164–97**		электроды для ручной дуговой сварки	проволока для аргоно- дуговой сварки	
Дпя элементов независимо от диаметра и толщины стенки					
	16FC, 17FC, 10F2C1,		УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-6, ЦУ-7, ЦУ-8,	Св-08Г2С, Св-08ГА-2, Св-08ГС	
	20	10, 20, 15ГС, 16ГС в сочетании с 12МХ, 15ХМ (и литье аналогичного состава)	УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-7, ТМУ-50, ЦУ-8, АНО-11, ИТС-4С, ЦУ-2ХМ, ТМЛ-1У, ЦЛ-38	Св-08Г2С, Св-08ГС, Св-08МХ*, Св-08ХМ*, Св-08ХМА-2, Св-08ХГСМА	
	20	10, 20, 15ГС, 16ГС в сочетании с 12Х2М1, 12Х1МФ, 15Х1М1Ф(и литье аналогичного состава)	УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-7, ЦУ-8, ТМУ-50, АНО-11, ИТС-4С, ЦУ-2ХМ, ТМЛ-1У, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45	Св-08Г2С, Св-08ГС, Св-08МХ*, Св-08ХМ*, Св-08ХМА-2, Св-08ХГСМА, Св-08ХМФА*, Св-08ХМФА-2, Св-08ХГСМФА	

Группа основных ма-	Сталь свариваемых труб	Присадочный материал						
териалов по ПБ 03-164-97**		электроды для ручной дуговой сварки	проволока для аргоно- дуговой сварки					
	Для элементов независимо от диаметра и толщины стенки							
4 + 4	12MX, 15XM, 12X2M1 в сочетании с 12X1MФ, 15X1M1Ф (и литье анало- гичного состава)	ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45	Св-08МХ*, Св-08ХМ*, Св-08ХМА-2, Св-08ХГСМА, Св-08ХМФА*, Св-08ХМФА-2, Св-08ХГСМФА					
	Для элементов диаметром	не более 100 мм и толщиной н	не более 10 мм					
4+4	12X1МФ в сочетании с 12X2МФСР	ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45	Св-08ХМ*, Св-08ХМА-2, Св-08ХГСМА, Св-08ХМФА* Св-08ХМФА-2, Св-08ХГСМФА					
21	12X1MФ в сочетании с 10X9MФБ (ДИ 82-Ш)	ЦЛ-39, ЦЛ-20, ТМЛ-3У	Св-08ХМФА*					
5+9	10Х9МФБ (ДИ 82-Ш) в сочетании с 12Х18Н12Т	ЦТ-45	Св-О3Х20Н45Г6М6Б-ВИ (ЭП953-ВИ)					

22	12X1МФ в сочетании с 12X11B2МФ***	ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45, ОЗЛ-6, ЗИО-8, ЦЛ-25/1, ЦЛ-25/2, ЭА-395/9, ЦТ-10, НИАТ-5	Св-08ХМФА*, Св-08ХМФА-2, Св-08ХГСМФА, Св-07Х25Н13, Св-10Х16Н25АМ6
23 и 24	20, 12X1MФ, 12X2МФСР, 15X1M1Ф, 12X11B2МФ в сочетании с 12X18H10T, 12X18H12T	ЗИО-8, ОЗЛ-6, ЦЛ-25/1, ЦЛ-25/2, ЭА-395/9, ЦТ-10, НИАТ-5	Св-07X25H13, Св-10X16H25AM6
23	12X1МФ в сочетании с 10X13Г12БС2Н2Д2 (ДИ 59)	ЭА-395/9, ЗИО-8, ЦЛ-25	Св-10X16H25AM6, Св-07X25H13
9 + 9	12X18H12T в сочетании с 10X13Г12БС2H2Д2 (ДИ 59)	ЦТ-15	Св-08Х19Н10Г2Б, Св-04Х20Н10Г2Б

^{*} Проволоку марок Св-08МХ, Св-08ХМ и Св-08ХМФА допускается применять для аргонодуговой сварки только при содержании кремния в проволоке не менее 0,22%.

Примечание. Разнородные соединения из стали 10X13Г12БС2Н2Д2 (ДИ 59) со сталями 12X1МФ и 12X18Н12Т выполняются комбинированной сваркой (корень – ручная аргонодуговая, остальное сечение – дуговая сварка покрытыми электродами).

^{**} Расшифровка групп основных материалов:

^{20 -} сочетание сталей группы 4 со сталями группы 1;

^{21 -} сочетание сталей группы 5 со сталями группы 4;

^{22 -} сочетание сталей группы 6 со сталями группы 4;

^{23 -} сочетание сталей группы 9 со сталями групп 1 или 4;

^{24 -} сочетание сталей группы 9 со сталями группы 6.

^{***} Допускается применять металл шва 09Х1МФ для труб поверхностей нагрева.

16. СВАРКА ГАЗОПЛОТНЫХ ПАНЕЛЕЙ КОТЛОВ

16.1. Общие положения

16.1.1. Требования раздела 16 распространяются на сборку и сварку на сборочной площадке и на месте монтажа поверхностей нагрева котлов из плавниковых труб, изготовленных из хромомолибденованадиевой стали (12X1МФ), хромомолибденовых (15XM, 12X2M1, 12MX) и углеродистых (20, 10) сталей, а также из гладких труб с приваренными полосами (плавниками).

Рассматривается технология сварки стыков труб (кольцевых швов) и продольных швов (по плавникам) при укрупнительной сборке заводских блоков газоплотных панелей и их монтаже, приварке уплотнительных вставок и гребенок узла уплотнения разъемов поверхности нагрева газоплотных котлов.

16.1.2. В процессе сварочных работ при монтаже котлов с газоплотными панелями необходимо обратить особое внимание на качество подготовки и сборки стыков труб и продольных швов плавников, вварки уплотнительных вставок и узлов уплотнения разъемов. Нельзя допускать натяга панелей плавниковых труб, а также большого зазора при сборке во избежание необходимости наложения швов чрезмерно больших сечений.

Выполнение продольных швов по плавникам, собранным без зазора, запрещается.

Качество сборки и сварки плавниковых труб на укрупнительной площадке и в процессе монтажа котла должен проверять мастер по сварке.

- 16.1.3. К выполнению кольцевых и продольных швов газоплотных панелей могут быть допущены сварщики, которые прошли специальную подготовку по сварке плавниковых труб.
- 16.1.4. Сварку продольных швов по плавникам, вварку уплотнительных вставок и гребенок из хромомолибденованадиевых и хромомолибденовых сталей (12X1МФ, 12X2М1 и др.) следует производить с предварительным подогревом мест сварки до 150–200 °C газопламенными горелками на ширину

не менее 50 мм по обе стороны от места наложения шва, при этом должны быть соблюдены требования п. 6.5.9.

16.2. Сварка стыков труб

- 16.2.1. Стыки труб газоплотных панелей можно сваривать ручной дуговой, ручной аргонодуговой и комбинированной сваркой. Конструкция стыка должна соответствовать типу Тр-2 (см. табл. 6.2). При подготовке, сборке и сварке стыков должны соблюдаться требования, изложенные в соответствующих разделах настоящего РД. Электроды и сварочную проволоку необходимо выбирать с учетом марки свариваемых труб в соответствии с рекомендациями раздела 4 (см. табл. 4.1 и 4.4).
- 16.2.2. Концы труб в газоплотных панелях нужно обрабатывать механическим способом. Зазор «а» (рис. 16.1) в стыках труб должен быть 0,5–2 мм. При заклинивании труб или образовании зазора в стыках меньше указанного панели следует отодвинуть, оттянуть из ряда мешающие трубы и обточить торцы собираемых труб до образования зазора требуемого размера. Для уменьшения опасности заклинивания труб может быть применена ступенчатая подготовка торцов труб одной из стыкуемых панелей (рис. 16.1). Притаком способе обработки и сборки панелей в первую очередь собирают и сваривают стыки труб на участке 1, отторцованные с нулевым допуском на зазор «а», затем стыки труб на участке 2, отторцованные с допуском 1,25 мм, и в последнюю очередь на участке 3, где допуск составляет 1.5 мм.
- 16.2.3. В процессе укрупнения панелей собирают и сваривают стыки плавниковых труб вначале с меньшим зазором, затем с большим. Если в собранной панели стыки с одинаковыми зазорами располагаются рядом (группой), то их следует собирать и сваривать от середины этой группы через два-три стыка. После заварки трех-четырех стыков этой группы необходимо наложить корневые слои шва на трех-четырех стыках противоположного участка панели, чтобы обеспечить наименьшую деформацию блока и сохранить зазоры во всех остальных стыках.

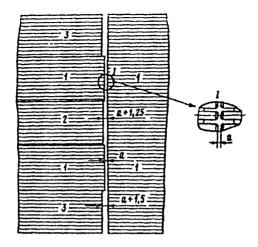


Рис. 16.1. Схема ступенчатой подготовки торца одной из стыкуемых газоплотных панелей (на каждом участке примерно 10 труб):

1–3 – номера участков

- 16.2.4. Сборку стыков труб и сварку корневого слоя шва необходимо осуществлять в специальном центровочном приспособлении без предварительной прихватки. Сварку должны выполнять одновременно два сварщика одним из способов, приведенных в п. 7.2.5.
- 16.2.5. Стыки может сваривать один сварщик в следующем порядке: с одной стороны панели он сваривает половину периметра не более четырех стыков, переходит на другую сторону панели и заваривает вторую половину периметра этих четырех стыков, затем продолжает сварку в такой же последовательности по три-четыре стыка, соблюдая требования, изложенные в п. 16.2.3.
- 16.2.6. Контроль качества сварных соединений труб (кольцевых швов) газоплотных панелей производится в соответствии с требованиями, приведенными в разделе 18.

16.3. Сварка продольных швов

16.3.1. Продольные швы (по плавникам) выполняют ручной дуговой сваркой, механизированной сваркой в углекислом газе или механизированной сваркой порошковой проволокой.

Сварка производится углеродистым присадочным материалом независимо от способа сварки и марки свариваемой стали:

при ручной дуговой сварке—электродами Э50A (УОНИ-13/55, ЦУ-5, ТМУ-21У) диаметром не более 4 мм;

при механизированной сварке в углекислом газе — сварочной проволокой Св-08Г2С или Св-08ГС диаметром 1,2—1,6 мм;

при механизированной сварке порошковой проволокой – проволокой марок, указанных в табл. П9.2 приложения 9 (при использовании проволоки ПП-АН8 требуется дополнительная защита углекислым газом).

- 16.3.2. Наложение продольных швов по плавникам в районе стыковых соединений труб (на участках, остающихся недоваренными на заводе), а также при соединении (укрупнении) панелей на сборочной площадке следует производить с двух сторон. Допускается односторонняя сварка при условии снятия фаски на плавниках под углом 30° с обеспечением провара корня шва на всю глубину плавника.
- 16.3.3. Зазор между свариваемыми плавниками независимо от способа сварки должен быть не менее 1,5 и не более 3 мм. В местах отсутствия зазора необходимо пропилить плавники механическим путем (наждачным кругом, фрезой и т. д.) и обеспечить требуемый зазор.

Если зазор превышает норму и составляет 3–5 мм или плавники состыкованы со смещением (ступенькой), сварку продольных швов необходимо выполнять с двух сторон обратноступенчатым способом.

16.3.4. После сварки и ультразвукового контроля стыков труб соединения выравнивают по плавникам на участках, оставшихся недоваренными на заводе, и накладывают по две прихватки длиной 60–70 мм на каждом участке.

- 16.3.5. Сварку недоваренных на заводе участков продольных швов должны производить два сварщика, начиная от середины блока к краям через одну трубу.
- 16.3.6. Сварку швов необходимо осуществлять обратноступенчатым способом. Заварив швы с одной стороны панели, сварщики в той же последовательности должны сваривать швы с противоположной стороны блока (панели).
- 16.3.7. Если недоваренные на заводе участки находятся с обеих сторон кольцевого шва, то накладывают все швы вначале с одной стороны стыка труб, затем с другой. После этого сварщики переходят на противоположную сторону блока и выполняют швы в той же последовательности.
- 16.3.8. При сварке продольных швов допускается, чтобы сварщики работали одновременно на противоположных сторонах панели (один сверху, другой снизу). В этом случае порядок сварки тот же, что указан в пп. 16.3.5–16.3.7.
- 16.3.9. Стенки топочной части котла собирают на плазе из блоков панелей с зазором между плавниками 1,5—3 мм. Панели, собранные в блоки, прихватывают по краям, отступая от края на 50—70 мм, и далее через каждые 400—500 мм по всей длине блока. Длина прихваточных швов должна быть 150—200 мм, высота равной толщине плавника. Прихватки не перевариваются, а являются частью основного шва.
- 16.3.10. Продольные швы панелей должны выполнять одновременно два или четыре сварщика. Швы длиной более 16 м должны выполнять одновременно четыре сварщика. Сварку могут вести одновременно все сварщики с одной стороны панели (сверху или снизу) или с противоположных ее сторон (один снизу, другой сверху или двое снизу и двое сверху). Сварку следует производить от середины блока к краям независимо от числа сварщиков по схеме рис. 16.2. Каждую часть шва выполняют обратноступенчатым способом.
- 16.3.11. При стыковке блоков A и E панелей с большой серповидностью, когда зазор a между плавниками превышает 5 мм (рис. 16.3), необходимо распределить его равномерно по

соседним стыкам. Для этого следует разрезать несколько (двапять) соседних продольных швов на участках длиной *I* и развести трубы до образования зазора не более 5 мм, затем эти участки прихватить и заварить с двух сторон обратноступенчатым способом. Если панели нельзя состыковать с зазором менее 5 мм, сваривать их необходимо по технологии завода изготовителя котла.

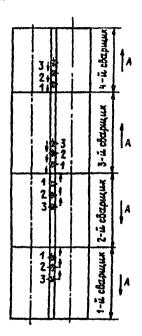


Рис. 16.2. Схема сварки панелей по плавникам на сборочной площадке:

A – общее направление сварки;

1–3 – очередность наложения участков шва

16.3.12. Продольные стыковые швы на вертикальной плоскости (при стыковке блоков панелей в проектном положении) выполняют, как правило, ручной дуговой сваркой. Сварку ведут одновременно два или четыре сварщика с разбивкой шва по длине на четыре равные части. Каждую часть заваривают обратноступенчатым способом, однако в этом случае на всей длине шва участки по 400–500 мм сваривают в одном направлении—снизу вверх. Сварку следует выполнять электродами диаметром 2,5–3 мм. Разрешается сварку вертикальных швов с одной стороны панели выполнять электродами диаметром 4 мм.

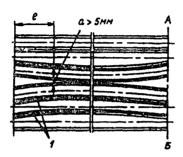


Рис. 16.3. Стыковка панелей с большой серповидностью: A, Б – блоки; 1 – разрезаемые швы; а – зазор

16.3.13. Стенки в углах топки соединяют с помощью прутка диаметром d=8—10 мм из стали 20 или 12X1МФ (рис. 16.4), при этом зазор b между стенками должен быть не более 12 мм. Если зазор превышает указанный размер, то конструкция узла соединения стенок и технология сварки должны быть определены заводом — изготовителем котла.

После установки стенок в проектное положение приваривают пруток к обеим стенкам в вертикальном положении с соблюдением требований, изложенных в п. 16.3.12. Пруток к трубе необходимо приваривать электродами диаметром 2,5—3 мм на минимальном токе, чтобы глубина проплавления стенки трубы была не более 2 мм. Для приварки прутка к плавнику могут быть применены электроды диаметром 4 мм.

16.3.14. Оборудование и режим механизированной сварки в углекислом газе приведены в разделе 11.

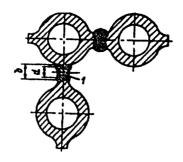


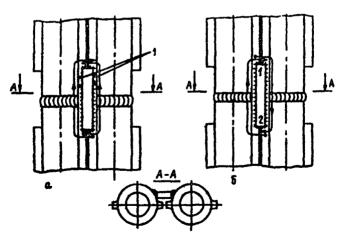
Рис. 16.4. Соединение стенок газоплотных панелей:
1 — соединительный пруток

16.3.15. Для механизированной сварки порошковой проволокой используются полуавтоматы ПМП-6, А-765УЗ, А-1197П, А-1197С, А-1035. При сварке самозащитной порошковой проволокой полуавтоматы комплектуются горелками А-1231-5-02 или А-1231-5-03, при сварке порошковой проволокой с дополнительной защитой углекислым газом — горелками А-1231-5Г2 или А-1231-5Г3.

Сварку порошковой проволокой следует выполнять на постоянном токе обратной полярности.

В качестве источников питания постоянного тока используются преобразователи или выпрямители с жесткой или пологопадающей вольт-амперной характеристикой.

Ориентировочные режимы механизированной сварки порошковой проволокой приведены в табл. 16.1; они должны уточняться при пробной сварке.


Толщина наплавляемого слоя должна быть не более 6 мм.

16.3.16. Все продольные швы по плавникам подвергаются визуальному контролю и проверке керосиновой пробой. Нормы оценки качества по результатам визуального контроля приведены в подразделе 18.3. Керосиновая проба на плотность производится по документу ПНАЭ Г7-019–89.

16.4. Приварка уплотнительных вставок, гребенок и накладок

16.4.1. Уплотнительные элементы привариваются ручной дуговой сваркой электродами диаметром 2,5—3 мм. Электроды для приварки уплотнительных вставок в местах расположения сварных стыков труб выбираются в зависимости от марки стали труб (см. табл. 4.1) или применяются электроды типа Э50А независимо от марки стали труб. Для приварки гребенок и накладок в узле разъема применяются электроды типа Э50А независимо от марки стали труб и уплотняющих элементов.

16.4.2. Уплотнительные вставки плотно подгоняются к ребрам и прихватываются в двух местах (рис. 16.5). При вертикальном положении панели сварка выполняется двумя швами снизу вверх с таким расчетом, чтобы замки швов оказались на плавнике, а не на трубе. При горизонтальном положении панели швы 1 и 2 накладываются в противоположных направлениях и замки швов также должны быть на плавниках. Для уменьшения внутренних напряжений уплотнительные вставки следует

Рис. 16.5. Приварка уплотнительных вставок при вертикальном (*a*) и горизонтальном (*б*) положениях стенки:

1, 2 - прихватки

Марка про- волоки	Диаметр проволоки, мм		Напряжение на дуге, В	Скорость подачи проволоки, м/мин	Вылет про- волоки, мм	Положение при сварке	Характер защиты сварочной ванны
ПП-АН1 ПП-АН3	2,8 2,8 3,0	220–280 250–320 270–450	26–30 22–24 24–29	160–180 190–220 180–190	15–35 20–50 40–50	Нижнее	Без допол- нительной защиты
ПП-АН7 СП-3	2,0 2,3 2,3	160–220 200–250 200–240	20-22 22-25 24-26	140-160 160-210 180-190	20–30 20–30 40–60		·
СП-2	2,3	280–300	2630	265–500	2060		
ПП-АН7 СП-3	2,0 2,3 2,3	130–150 140–160 160–200	20–22 21–23 22–24	120–160 100–140 160–180	20–30 20–30 30–50	Верти- кальное	
ПП-АН8	3,0	150–200	20–24	170–190	15–25	Нижнее	С допол- нительной защитой углекис- лым газом

приваривать от середины блока к краям поочередно через одну уплотнительную вставку.

Сварку необходимо вести на минимальном токе (не более 110 A), чтобы глубина проплавления стенки трубы была не более 2 мм.

- 16.4.3. К прихватке и сварке гребенок следует допускать сварщиков, прошедших специальную дополнительную подготовку по сварке этого узла.
- 16.4.4. Сварку уплотнения разъемов (рис. 16.6 и 16.7) необходимо выполнять в такой последовательности:
- а) после выравнивания и подгонки труб в зоне разъема заварить недоваренные на заводе центральные швы по плавникам в последовательности, указанной цифрами 1, 2, 3, и направлении, показанном стрелками на рис. 16.6, чередуя свар-

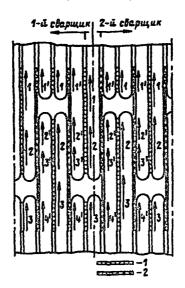
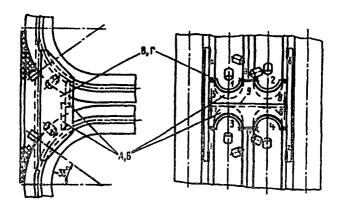



Рис. 16.6. Схема сварки узла уплотнения разъемов по плавникам (на участках, недоваренных на заводе): 1 – центральные швы; 2 – периферийные швы

ку через одну гребенку при общем направлении движения сварщиков от середины блока к его краям;

б) после наложения центральных продольных швов по плавникам устанавливают накладки B и Γ и прихватывают их к плавникам в четырех местах — a, δ , e, e (рис. 16.7), затем устанавливают гребенки A и B; зазор между деталями должен быть не более 2 мм; каждую гребенку прихватывают к плавникам труб в точках « ∂ » и «e»; длина прихватки должна быть равна ширине плавника;

Рис. 16.7. Последовательность сварки (1–9) узла уплотнения разъемов топочных экранов

- в) приваривают уплотнительные гребенки A, B к трубам угловым швом катетом не более 3 мм или катетом, предусмотренным чертежами завода-изготовителя (последовательность приварки уплотнительных гребенок показана на рис. 16.7 цифрами 1, 2, 3, 4, а направление стрелками); для того чтобы исключить опасность прожога трубы, сварку необходимо вести на минимальном токе с проплавлением труб не более 2 мм;
- г) после приварки уплотнительных гребенок к трубам по всему блоку производят сварку незаваренной части перифе-

рийных швов по плавникам между уплотнительными гребенками поочередно через одну гребенку, так же, как при сварке центральных швов; последовательность сварки обозначена цифрами 1′, 2′, 3′, 4′, а направление – стрелками на рис. 16.6;

- д) после наложения продольных периферийных швов по плавникам между уплотнительными гребенками приваривают накладки B, Γ ; направление приварки накладок показано на рис. 16.7 стрелками, а последовательность цифрами 5, 6, 7, 8;
- е) в последнюю очередь сваривают две детали гребенки (А и Б) нахлесточным швом с катетом 3 мм (шов 9).

Примечание. Если гребенка состоит из одной детали, ее следует собирать и варить в последнюю очередь, когда наложены все швы по плавникам.

- 16.4.5. После зачистки сварных швов от шлака и брызг необходимо произвести контроль качества сварных соединений узла уплотнения путем визуального контроля и керосиновой пробы.
- 16.4.6. Шипы следует устанавливать в последнюю очередь после сварки и контроля всего узла уплотнения, обваривать ручной аргонодуговой сваркой с применением присадочной проволоки Св-08Г2С диаметром 1,6–2 мм. Фаску на шипах должны снимать на заводе (угол фаски под сварку на шипах должен быть равен 30°, притупление 2 мм).

Примечание. Разрешается приваривать шипы к трубам с помощью сварочного пистолета или ручной дуговой сваркой, если данный способ сварки обеспечивает надлежащее качество сварных соединений. Допускается дуговая сварка шипов без фаски.

16.4.7. Все швы приварки уплотнительных вставок, гребенок и накладок проверяются путем визуального контроля и керосиновой пробы. Нормы оценки качества швов по результатам визуального контроля приведены в подразделе 18.3. Керосиновая проба на плотность производится по документу ПНАЭ Г7-019—89.

17. ТЕРМООБРАБОТКА СВАРНЫХ СОЕДИНЕНИЙ ТРУБ

17.1. Общие положения

- 17.1.1. Термообработка сварных соединений труб производится индукционным способом токами промышленной (50 Гц) и средней (до 8000 Гц) частоты, а также радиационным способом электронагревателями сопротивления (в том числе комбинированного действия) и газопламенными горелками.
- 17.1.2. Основным способом нагрева при термообработке стыков трубопроводов диаметром 108 мм и более со стенкой толщиной свыше 10 мм является индукционный нагрев током промышленной и средней частоты.

Термообработку сварных соединений радиационным способом с помощью электронагревателей сопротивления можно применять при толщине стенок труб не более 50 мм, а газопламенным способом — при толщине не более 25 мм. При радиационном электронагреве стыков труб со стенкой толщиной более 25 мм следует устанавливать внутри трубы на расстоянии 300—500 мм от шва тепловые заглушки, а также строго соблюдать требования к равномерности нагрева и измерению температур, изложенные в этом разделе.

17.1.3. Стыки труб из сталей 12X1МФ и 15X1М1Ф (соответственно и из литых деталей) при толщине стенки более 45 мм независимо от диаметра труб и при толщине стенки более 25 мм при диаметре труб 600 мм и более необходимо подвергать термообработке сразу после окончания сварки, не допуская охлаждения стыка ниже 300 °С. Если по техническим причинам (прекращение электропитания, повреждение оборудования, необходимость перестановки индуктора и т. п.) невозможно провести термообработку этих сварных соединений непосредственно после сварки, необходимо медленно охладить стык под слоем тепловой изоляции толщиной 8—15 мм. При восстановлении электрического питания стык следует сразу подвергнуть термообработке. Во всех остальных случаях термообработку

нужно производить не позднее чем через 3 суток после окончания сварки.

17.1.4. До термообработки подвергать сварные соединения воздействию нагрузок, снимать блоки с опор, кантовать, транспортировать и т. п. запрещается.

Перед термообработкой необходимо для трубопроводов, расположенных горизонтально, установить временные опоры на расстоянии не более 1 м по обе стороны от сварного соединения, а для трубопроводов, расположенных вертикально, следует разгрузить сварное соединение от веса трубопровода путем его закрепления ниже термообрабатываемого стыка. Временные опоры можно убирать только после полного остывания стыка.

В случае печной термообработки сварных соединений элементов котлов и трубопроводов допускается их транспортировка до печи при условии принятия мер, обеспечивающих разгрузку сварных соединений от изгибающих напряжений в процессе транспортировки и во время нагрева.

17.1.5. Термообработку стыков труб следует выполнять до холодного натяга трубопровода, т. е. до сборки и сварки замыкающего стыка.

17.2. Режимы термообработки

17.2.1. Термическая обработка стыковых сварных соединений труб котлов и трубопроводов должна выполняться по режимам, приведенным в табл. 17.1.

Термическая обработка угловых сварных соединений производится по режиму, приведенному в табл. 17.1 для соответствующих марок свариваемых сталей и типа металла шва, при этом за толщину термообрабатываемых элементов принимается приведенная толщина, полученная умножением номинальной толщины штуцера (бобышки) либо катета углового шва на коэффициент 1,25; если приведенная толщина получается меньше 11 мм, то берется время выдержки, соответствующее 11 мм. Примечание. Если приварка деталей креплений к паропроводам или коллекторам котлов должна быть выполнена на заводе, а по каким-либо причинам производится на монтаже, то необходимость и режим термообработки этих сварных соединений (как и технологию сварки) устанавливает завод-изготовитель.

Таблица 17.1
Режимы термообработки стыковых сварных соединений трубных элементов

Свариваемая сталь	Металл шва	Толщина* ¹ элемента,	Режим термической обработки* ²		
			темпера- тура, °С	длитель- ность вы- держки, ч, не менее* ³	
	Все видь	ı дуговой <mark>с</mark> вар	ки		
10, 20, 15Л, 20Л, 15ГС,	Углеро- дистый	Свыше 36* ⁴ до 60	560-590	1	
16ГС, 25Л, 20ГСЛ и их сочетания	••••••••••••••••••••••••••••••••••••••	Свыше 60	560–590	2	
12MX, 15XM, 20XMЛ и их	09MX, 09X1M	Свыше 10 до 20	700–730	1	
сочетания	00/1111	Свыше 20 до 45	700–730	2	
		Свыше 45	700–730	3	
12Х1МФ	09X1M	Свыше 10 до 20	710–740	1	
		Свыше 20 до 45	710–740	2	
		Свыше 45	710–740	3	
12X1MФ, 15X1M1Ф,	09Х1МФ	Свыше 10* ⁵ до 20	720–750	1* ⁶	
20ХМФЛ, 15Х1М1ФЛ и		Свыше 20 до 60	720–750	3	
их сочетания		Свыше 60	720–750	5	

Свариваемая сталь	Металл шва	Толщина* ¹ элемента,	Режим термической обработки* ²		
		мм	темпера- тура, °С	длитель- ность вы- держки, ч, не менее* ³	
15Х1М1Ф- ЦЛ* ⁷	09Х1МФ	Свыше 20	735–765	5	
10, 20, 20Л, 25Л, 15ГС, 16ГС, 20ГСЛ в сочетании с 12МХ и 15ХМ	950A, 09X1M, 09MX	Свыше 20 до 60 Свыше 60	690–720 690–720	3	
10, 20, 20Л, 25Л, 15ГС, 16ГС, 20ГСЛ в сочетании	Э50А ^{*8} , 09Х1М, 09МХ, 09Х1МФ	Свыше 10 до 20 Свыше 20 до 45	700–730 700–730	1 2	
с 12X1MФ, 20XMФЛ, 15X1M1Ф, 15X1M1ФЛ	03/11114	Свыше 45	700–730	3	
12MX, 15XM, 20XMЛ	09MX,	Свыше 10 до 20	710–740	1	
в сочетании с 12X1МФ	09Х1МФ	Свыше 20 до 45 Свыше 45	710–740	3	
12MX, 15XM, 20XMЛ	09X1M, 09MX.	Свыше 10 до 20	710–740	1	
в сочетании с 20ХМФЛ,	09X1МФ	Свыше 20 до 60	710–740	3	
15X1M1Ф, 15X1M1ФЛ		Свыше 60	710–740	5	
10Х9МФБ (ДИ 82-Ш)	10Х9НМФ, 10Х9ГСНМФ	46	750	0,5	

Свариваемая сталь	Металл шва	Толщина* ¹ элемента, мм	Режим термической обработки ^{‡2}		
			темпера- тура, °С	длитель- ность вы- держки, ч, не менее* ³	
12X1МФ в сочетании с 10X9МФБ (ДИ 82-Ш)	09Х1МФ	4-6	730	0,5	
	Газо	вая сварка			
12MX, 15XM	09MX, 09X1M	3–7	940±15	1,0–1,5 мин/мм толщины стенки	
12Х1МФ	09Х1М, 09МХ, 09Х1МФ	3–7	960±15	1,0–1,5 мин/мм толщины стенки	

^{*1} При соединении элементов одинаковой толщины – номинальная толщина этих элементов, при соединении элементов разной толщины (обработанных в соответствии с рис. 6.3 и 6.4) – фактическая толщина элемента непосредственно в месте сварки.

^{*2} Охлаждение до 300 °C после выдержки при отпуске должно обеспечиваться без снятия нагревательного устройства или под слоем теплоизоляции, далее — возможно на спокойном воздухе; при отрицательных температурах воздуха охлаждение после термообработки следует производить под слоем теплоизоляции до полного остывания сварного соединения.

^{*3} Может быть выше указанных значений не более чем на 1 ч. При вынужденных перерывах в процессе термообработки за длительность выдержки следует принимать суммарное время нахождения стыка при температуре обработки.

^{*4} В случае предварительного и сопутствующего подогрева стыка до температуры не ниже 100 °С при толщине стенки элемента 40 мм и менее термообработку сварного соединения можно не производить, кроме стыков, в которых хотя бы один из свариваемых элементов является литьем марки 25Л или 20ГСЛ.

- *5 Стыки труб диаметром более 219 мм подлежат термообработке при толщине стенки 8 мм и более.
- *6 Для стыков труб из стали 12X1МФ с литьем 20XМФЛ и 15X1М1ФЛ, а также из стали 15X1М1Ф с литьем 15X1М1ФЛ при толщине стенки трубы 20 мм и менее, сваренных электродами типа Э-09X1МФ, длительность выдержки должна составлять 1,5 ч.
- *7 Скорость нагрева до температуры отпуска не более 200 °C/ч, при этом в интервале температур 600–700 °C скорость нагрева должна быть не менее 100 °C/ч.
- *8 Термообработка сварных соединений, выполненных электродами типа Э50A, производится при толщине металла более 20 мм.
- 17.2.2. Термическая обработка стыковых сварных соединений не является обязательной в следующих случаях:
- а) для стыков труб поверхностей нагрева котлов с толщиной стенки до 11 мм включительно из углеродистых, низколегированных конструкционных (15ГС, 09Г2С и др.), хромомолибденовых и хромомолибденованадиевых сталей, сталей 12Х2МФСР и 12Х2МФБ, выполненных дуговой, аргонодуговой или комбинированной сваркой независимо от марки присадочного материала, а также стыков труб из стали 12Х11В2МФ (ЭИ-756), 12Х18Н12Т, 12Х18Н10Т и 10Х13Г12БС2Н2Д2 (ДИ 59), выполненных дуговой, аргонодуговой или комбинированной сваркой с применением аустенитного присадочного материала;
- б) для стыков труб из углеродистых и кремнемарганцовистых сталей при толщине стенки до 40 мм в случае выполнения сварки с подогревом до температуры не ниже 100 °C;
- в) для стыков труб диаметром не более 800 мм из стали 22К, сваренных электродами типа Э42А, при толщине стенки не более 45 мм;
- г) для стыков труб диаметром не более 219 мм из сталей 12МХ, 15ХМ и 12Х1МФ, сваренных электродами Э-09Х1М, работающих при температуре до 510 °C включительно, при толщине стенки не более 18 мм:
- д) для стыков труб поверхностей нагрева котлов из сталей 15ХМ, 12МХ и 12Х1МФ, выполненных газовой сваркой проволокой Св-08МХ, Св-08ХМ и Св-08ХМФ, при отсутствии в шве и околошовной зоне участков со структурой перегрева (зерна

размером крупнее балла 3 по шкале ГОСТ 5639), мартенситной и троостомартенситной структуры, что проверяется на двух-трех образцах, вырезанных из производственных стыков;

- е) для стыков труб из углеродистых и низколегированных конструкционных сталей в сочетании с низколегированными теплоустойчивыми сталями, сваренных электродами типа Э50А, при толщине стенки 20 мм и менее;
- ж) для стыков труб из сталей разных структурных классов при диаметре труб не более 100 мм и толщине не более 10 мм, выполненных в соответствии с требованиями табл. 15.1.
- 17.2.3. Термообработка угловых сварных соединений не является обязательной в следующих случаях:
- а) для сварных соединений штуцеров (труб) с коллекторами или трубопроводами если они отвечают требованиям п. 7.7.8;
- б) для сварных соединений бобышек с паропроводами из хромомолибденовой и хромомолибденованадиевой стали если наружный диаметр бобышки не более 45 мм и на 1 м трубы приваривается не более трех бобышек;
- в) для сварных соединений деталей креплений с паропроводами или коллекторами из хромомолибденовой и хромомолибденованадиевой стали если угловой шов выполнен электродами типа Э-09Х1М или Э-09Х1МФ и имеет общий (по периметру привариваемой детали) объем наплавленного металла не более 15 см³ (объем 15 см³ соответствует шву длиной 300 мм с катетом 10 мм);
- г) для сварных соединений деталей креплений с паропроводами, коллекторами или элементами котла если угловой шов выполнен аустенитными электродами согласно п. 4.1.2;
- д) для сварных соединений деталей креплений и бобышек с трубопроводами или коллекторами из углеродистых и кремнемарганцовистых сталей, выполненных углеродистыми электродами.
- 17.2.4. Если после термообработки твердость металла шва превышает допустимую (см. п. 18.4.4), следует производить повторный отпуск сварного соединения, но не более трех раз с учетом первоначального.

17.3. Оборудование, материалы и оснастка

- 17.3.1. В состав установок для местной термической обработки сварных соединений труб входят источник питания (нагрева), собственно нагреватель, устройство для контроля температуры и режима нагрева стыка, соединительные кабели и провода (при электронагреве) или шланги (при газопламенном нагреве).
- 17.3.2. Для индукционного нагрева токами частотой 50 Гц в качестве источников питания используются трансформаторы с падающей и жесткой характеристиками.
- 17.3.3. Для индукционного нагрева током средней частоты используются установки, в которых в качестве источников питания могут применяться преобразователи, технические данные которых приведены в приложении 14 (табл. П14.2, П14.3), а также другие преобразователи, отвечающие предъявляемым к ним требованиям. Для электронагревателей сопротивления должны быть использованы сварочные трансформаторы (прил. 14, табл. П14.1), а при их отсутствии сварочные преобразователи и выпрямители.
- 17.3.4. Для питания многоканальной системы термообработки сварных соединений током средней частоты (рис. 17.1) используется машинный преобразователь ВПЧ. От источника питания 4 идет кольцевая кабельная разводка 6. На равных расстояниях одно от другого к ней подключены стационарные постовые устройства 9, к которым присоединены переносные постовые устройства 7, связанные с индукционными нагревателями. Управление индукционными нагревателями осуществляется через стационарные и переносные постовые устройства с пультом управления 1, на который поступает информация о процессе нагрева от датчиков температуры (термоэлектрических преобразователей), установленных на стыках.

Многоканальная система дает возможность одновременно вести термообработку нескольких стыков различных размеров на разных режимах в радиусе обслуживания от одного источника питания до 800 м. Пульт управления, размещен-

ный в кабине, может быть выполнен на трех или шести каналах (в зависимости от числа постовых устройств). Для каждого постового устройства устанавливается программа, обеспечивающая нагрев стыка по заданному режиму. Пульт управления позволяет автоматически управлять процессом термообработки, обеспечивает контроль за электрическими и температурными параметрами нагрева, пуск и остановку источника питания.

Рис. 17.1. Схема многоканальной (многопостовой) системы термообработки сварных соединений током средней частоты: 1 — пульт управления; 2 — шкаф запуска; 3 — кабель питания током частотой 50 Гц; 4 — источник питания; 5 — силовая сборка; 6 — кабель питания током средней частоты; 7 — переносные постовые устройства; 8 — граница сборочной площадки; 9 — стационарные постовые устройства; 10 — щиток термоэлектродной разводки; 11 — провод термоэлектродной разводки; 12 — кабель управления

- 17.3.5. Для компенсации реактивной мощности при термообработке токами средней частоты используются конденсаторы. Технические данные конденсаторов и схемы подключения их приведены в приложении 15.
- 17.3.6. Для присоединения индукционного и радиационного электронагревателей к источнику питания с током частотой 50 Гц

необходимо применять провода и кабели ПС (ТУ 16-505.657–74), КРПТ (ТУ 16.К73.05–93), КОГ1 и КОГ2 (ТУ 16.К73.03–88), КГ (ТУ 16.К73.05–93), сечение которых следует выбирать по рабочему току нагревателя:

Допустимая 80 100 140 170 215 270 330 385 440 510 605 695 токовая нагрузка, А

Сечение 10 16 25 35 50 70 95 120 150 185 240 300 провода (кабеля), $\mbox{мм}^2$

17.3.7. Для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты (2400 и 8000 Гц) применяется кабель КРПТ; сечение кабеля подбирается по данным табл. 17.2.

Таблица 17.2

Данные для подбора сечения кабеля КРПТ для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты

Допустимая токовая нагрузка, А, при частоте		Число и сечение* жил, мм²	Допустимая токовая нагрузка, А, при частоте		Число и сечение* жил, мм²
2400 Гц 8000 Гц			2400 Гц	8000 Гц	
96	72	2×50	135	105	3×70
115	90	2×70	155	115	3×95
135	100	2×95	180	135	3×120
150	115	2×120	205	155	3×120
170	130	3×95	220	165	3×120
115	90	3×50	250	185	3×120

^{*} Указано общее сечение кабеля (к обоим выводам нагревателя или конденсатора).

17.3.8. Основными теплоизоляционными материалами при индукционном нагреве являются асбестовые и асбостеклянные ткани, вспомогательными - асбестовый картон и шнур, при нагреве элементами сопротивления - соответственно теплоизоляционные маты и асбестовые ткани или картон. Теплоизоляционные маты изготавливаются толщиной 50 мм из кремнеземной ткани КТ-11 с набивкой из каолинового рулонного материала ВКР-150 или ваты ВК-200. Маты прошиваются кремнеземной нитью К11С6. Для крепления теплоизоляционных матов на нагревателях и трубах применяется лента толщиной 0,5-1 мм из жаропрочной стали. Для повышения долговечности матов рекомендуется до их установки обернуть электронагреватели и трубу одним слоем асбестовой ткани. Если маты отсутствуют, то можно использовать асбестовую ткань или асбестовый картон, при этом толщина изоляции должна быть не менее 50 мм.

Характеристики теплоизоляционных материалов приведены в приложении 16.

Нагревательные устройства

17.3.9. В качестве индукционных нагревателей применяются гибкие неохлаждаемые (естественно охлаждаемые) индукторы, которые наматываются на трубу в виде одной или двух последовательно соединенных секций. Гибкий неохлаждаемый индуктор выполняется из многожильного медного провода сечением 35—240 мм² марок М (жилы диаметром 2,51—3,15 мм), МГ (жилы диаметром 0,58—0,85 мм) или МГЭ (жилы диаметром 0,73 мм), наматываемого на предварительно изолированную тепловой изоляцией наружную поверхность трубы. Индуктор при питании током средней частоты перед намоткой на трубу должен быть изолирован по всей длине термостойким материалом (лентой, чехлом), исключающим возможность поражения током обслуживающего персонала.

Технические данные неизолированных гибких проводов для индукторов приведены в приложении 17. Пример двухсекционного гибкого индуктора представлен на рис. 17.2.

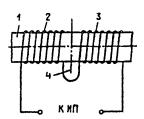


Рис. 17.2. Двухсекционный гибкий индуктор: 1 – труба; 2, 3 – секции индуктора; 4 – ось сварного стыка; ИП – источник питания

17.3.10. Фирма «Унитех» изготавливает водоохлаждаемые кабели для индукционного нагрева труб, включающие гибкий кабель ВГИК, являющийся индуктором, и два токоподвода (ВИТ и МТК) (рис. 17.3). Кабель ВГИК представляет собой гофрированную гибкую трубку диаметром 25–30 мм из нержавеющей стали или латуни толщиной 0,2–0,3 мм, помещенную в медную оплетку, являющуюся основной токопроводящей частью кабеля. Снаружи кабель изолирован термостойкой резиной, стеклотканевым и асботканевым чехлом. Кабель ВГИК выпускается нескольких модификаций в зависимости от величины и частоты рабочего тока (на ток 800, 1000 и 1200 А частотой от 50 Гц до 10 кГц).

С помощью ВГИК можно производить нагрев труб любого диаметра и толщины стенки до температуры 1200 °C.

В качестве источника питания следует использовать источники тока средней частоты (ВПЧ, ППЧВ, СЧИ и др.).

Техническая характеристика водоохлаждаемых кабелей для индукционных установок приведена в приложении 18.

17.3.11. Гибкие пальцевые электронагреватели типа ГЭН (рис. 17.4) относятся к нагревателям радиационного действия и используются для предварительного подогрева и термообработки сварных соединений труб и других деталей толщиной до 50 мм.

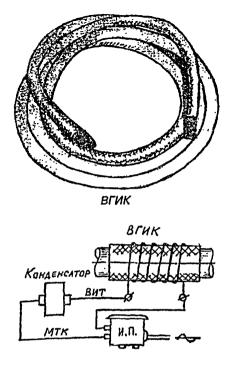


Рис. 17.3. Водоохлаждаемые гибкие индукционные кабели ВГИК, ВИТ и МТК и схема их подключения

Нагревательный элемент* состоит из двух проволок марки X20H80 диаметром 3,6 мм, изогнутых в виде «пальцев». В целом нагреватель представляет гибкую секцию, которую можно установить вокруг трубы. Каждый «палец» защищен набором керамических изоляторов. Длина пальца, характеризующая ширину панели, составляет 100 мм. Посередине секции укреплена лента из жаропрочной стали, с помощью которой нагреватель крепится на трубе.

^{*} В качестве нагревательных элементов в нагревателях радиационного и комбинированного действия применяются лента и проволока из прецизионных сплавов, характеристика которых приведена в приложении 19.

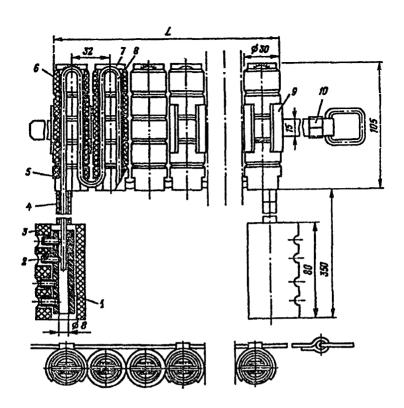


Рис. 17.4. Гибкий пальцевый электронагреватель сопротивления ГЭН: 1 – контактная втулка; 2 – шпилька; 3–6 – втулки-изоляторы; 7 – ограничитель; 8 – нагревательный элемент; 9 – скоба для крепления пояса; 10 – пояс для крепления электронагревателя на трубе

Число пальцев в секции зависит от диаметра трубы, для которой предназначен нагреватель. Так, для трубы диаметром 108 мм нагреватель состоит из 13 пальцев, для трубы диаметром 325 мм — из 34 пальцев.

Нагрев осуществляется поясом, представляющим собой одну или несколько последовательно расположенных секций

 Γ ЭН, суммарная длина которых равняется длине окружности L термообрабатываемого сварного соединения.

При диаметре трубы до 325 мм пояс состоит из одной секции с максимальным числом пальцев в секции 34. Необходимое число поясов ГЭН зависит от толщины стенки трубы и ширины зоны равномерного нагрева.

Максимальная температура нагрева трубы с помощью ГЭН— 1000 °C. Нагреватель позволяет производить не более 25 нагревов до 750 °C.

В качестве источника питания могут быть использованы сварочные трансформаторы, а при их отсутствии – сварочные источники постоянного тока, обеспечивающие достаточную электрическую мощность (см. прил. 14, табл. П14.1).

Техническая характеристика нагревателей типа ГЭН приведена в приложении 20 (табл. П20.1).

17.3.12. Гибкий радиационный электронагреватель (ГРЭН) (рис. 17.5) конструкции НПО ЦНИИТМАШ, технические данные которого приведены в приложении 20 (табл. П20.2), представляет собой плоскую гибкую панель, в которую вмонтированы нагревательные элементы из проволоки X20H80-Н или X23Ю5Т диаметром 3,2 мм. Проволока помещена в керамические изоляторы с окнами; благодаря этим окнам обеспечивается более эффективный нагрев трубы.

Нагреватель набирается из такого числа элементов, чтобы его длина L равнялась длине окружности нагреваемой трубы, а число нагревательных секций (поясов) выбирается в зависимости от требуемой ширины зоны равномерного нагрева, рассчитанной в соответствии с рекомендацией п. 17.4.1.

Источником питания током может служить сварочный трансформатор или сварочный источник постоянного тока.

Максимальная температура нагрева трубы 1150 °C.

Нагреватели ГРЭН комплектуются программным блоком управления термопроцессом (БУТ), обеспечивающим измерение и регулирование температуры нагрева трубы по заданной программе. Схема подключения нагревателя ГРЭН к источнику питания приведена на рис. 17.6. Технические характеристики программного блока управления термопроцессом приведены в приложении 21.

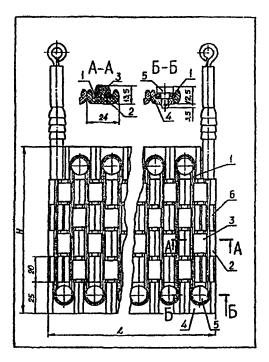


Рис. 17.5. Гибкий радиационный электронагреватель ГРЭН: 1 — нагревательный элемент; 2, 4, 6 — изоляторы; 3 — замок-изолятор; 5 — пробка-фиксатор

17.3.13. Нагреватели типа КЭН (комбинированные электронагреватели) представляют собой сердечник из нихромовых проволок диаметром 3,6 мм (от 1 до 6 проволок), помещенный в керамические втулки. Небольшие размеры втулок придают нагревателю гибкость, позволяющую намотать его на трубу в

виде соленоида. Пропуская через нагреватель постоянный ток, нагревательный элемент выполняет функцию радиационного излучателя тепла, если же нагреватель подключают к источнику переменного тока, то он, кроме того, является индуктором, нагревающим трубу индуцированным током.

Технические данные нагревателей типа КЭН приведены в приложении 20 (табл. П20.3).

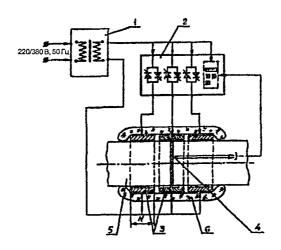


Рис. 17.6. Схема подключения нагревателя ГРЭН к источнику питания:

1 – сварочный преобразователь; 2 – программный блок управления термопроцессом (БУТ); 3 – секции ГРЭН;

4 - термоэлектрический преобразователь;

5 – трубопровод; 6 – теплоизоляционный мат

17.4. Технология термообработки

17.4.1. Общая ширина зоны равномерного нагрева (т. е. участка трубы со швом посередине, на поверхности которого температура не выходит за пределы, указанные в табл. 17.1) должна быть не менее 1,3 $\sqrt{(\mathcal{I}_H - S) \cdot S}$, но не менее 4S (\mathcal{I}_H — наружный диаметр трубы, S — номинальная толщина стенки трубы).

Примечание. В отдельных случаях, когда конструктивные особенности узла не позволяют обеспечить требуемую ширину зоны равномерного нагрева, разрешается уменьшить ширину этой зоны на 20% указанной в данном пункте с одновременным увеличением длительности выдержки на 1 ч против приведенной в табл. 17.1.

17.4.2. Длительность нагрева до температуры отпуска сварных соединений хромомолибденовых и хромомолибденованадиевых сталей должна примерно соответствовать данным табл. 17.3. Длительность (скорость) нагрева сварных соединений углеродистых и кремнемарганцовистых сталей не регламентируется.

Таблица 17.3

Длительность нагрева до температуры отпуска стыков труб из хромомолибденовых и хромомолибденованадиевых сталей

	Время нагрева*, мин	, не менее
Номинальная	Способами	f
толщина стенки труб, мм	индукционным (частота 50 Гц/средняя частота)	радиационным
До 20	20/30	40
21–25	30/50	70
26–30	30/50	100
31–35	50/80	120
36–45	50/80	140
46–60	80/100	160
61–80	100/120	_
81–100	130/150	_

^{*} Дано при начальной температуре стыка 20 °С. Если нагрев начинается при более высокой температуре (например, сразу после сварки), его длительность соответственно уменьшается.

Примечание. В интервале температур 500-700 °С скорость нагрева сварных соединений труб из хромомолибденованадиевой

стали должна быть не ниже 100 °C/ч. Нагрев сварных соединений центробежнолитых труб с толщиной стенки более 20 мм из стали 15Х1М1Ф-ЦЛ до температуры отпуска должен проводиться со скоростью не более 200 °C/ч, при этом в интервале температур 600–700 °C скорость нагрева должна быть не ниже 100 °C/ч.

Индукционный способ нагрева

- 17.4.3. Индукционный нагреватель может быть одно- или двухсекционным; двухсекционный индуктор дает возможность проводить подогрев перед сваркой и последующую термообработку без перемотки или перестановки индуктора.
- 17.4.4. При установке индуктора на трубу необходимо руководствоваться следующими положениями:

кольцевой зазор между индуктором и нагреваемой поверхностью должен быть минимальным и равномерным по периметру, для чего следует плотно навивать гибкий индуктор на трубу, покрытую тепловой изоляцией (асбестом);

на трубах диаметром менее 200 мм длина теплоизолируемого участка должна быть 200–250 мм в каждую сторону от сварного шва при толщине изоляции 8—12 мм, на трубах диаметром менее 400 мм — 300—400 мм при той же толщине изоляции, на трубах диаметром 400 мм и более эти размеры должны быть соответственно 500—700 и 15—20 мм; при использовании двухсекционных индукторов, которые применяют одновременно для подогрева перед сваркой, зона сварного шва изолируется отдельно;

расстояние (зазор) между витками гибкого индуктора должно составлять 10–20 мм (кроме случая, оговоренного в п. 17.4.5);

не должно быть скруток, оборванных прядей медных жил, снижающих площадь поперечного сечения индуктора более чем на 15%.

17.4.5. Для выравнивания температуры по окружности вертикального стыка можно использовать следующие способы:

создать тепловую изоляцию различной толщины по окружности стыка — в нижней части толще, чем в верхней (при изоля-

ции листовым асбестом верхняя половина стыка изолируется обычно двумя слоями, нижняя — тремя);

установить индуктор так, чтобы расстояние между витками (или между секциями двухсекционного индуктора) в зоне стыка на верхнем участке было на 10–50 мм больше, чем на нижнем.

Для выравнивания температуры вдоль оси трубы при термообработке горизонтальных стыков рекомендуется смещать ось индуктора относительно оси стыка вниз на один-два витка.

При термообработке стыков труб диаметром 900 мм и более для эффективного и равномерного нагрева следует устанавливать (если это возможно) внутри труб на расстоянии 300—500 мм по обе стороны стыка теплоизоляционные заглушки.

Рекомендуемое расположение гибких индукторов на вертикальных и горизонтальных стыках труб в зависимости от диаметра показано в табл. 17.4.

17.4.6. Индуктор для подогрева стыка перед сваркой и для последующей термообработки нужно устанавливать на трубу в следующей последовательности:

закрепить (приварить) бобышки для установки горячих спаев термоэлектрических преобразователей (ТП) согласно требованиям подраздела 17.5;

на трубу в районе сварного шва наложить тепловую изоляцию в соответствии с требованиями пп. 17.3.8, 17.4.4 и 17.4.5; намотать индуктор на трубу;

закрепить горячие спаи ТП в приваренные бобышки в соответствии с требованиями подраздела 17.5 (предварительно надрезав теплоизоляцию в месте установки бобышки) и подключить провода ТП к регистрирующему прибору;

присоединить к выводам индуктора токопроводящие провода от источника питания;

подключить конденсаторную батарею (при нагреве током средней частоты);

включить источник питания и провести нагрев по заданному режиму.

 Таблица 17.4

 Расположение гибких неохлаждаемых индукторов на вертикальных и горизонтальных стыках труб

Положение	Диаметр	Схемы расположения		Рассто	ояние,	мм	
стыка	трубы, мм	индуктора	Α	Б	В	Γ	Д
Вертикальное	108–194		25	1	1	1	-
	219–300 325–377 426–465 530–630 720–820 1020	5 B		40–45 50–55 80–55 100–105 105–110 115–120	30 35 40 50 60 70	11111	
Горизонтальное	108–194 219–300 325–377 426–465 530–630 720–820 1020	Ось шва С С С С С С С С С С С С С С С С С С С		11111		10-15 10-15 10-15 15-20 15-20 15-20 15-20	20 25 30 35 40 45 55

17.4.7. Ориентировочные технологические и электрические параметры термообработки сварных стыков труб различных диаметров гибкими индукторами из неизолированного медного провода приведены в табл. 17.5. Ориентировочные режимы нагрева стыков труб тиристорными преобразователями средней частоты (инверторами) даны в табл. 17.6.

17.4.8. Нагрев для термообработки угловых штуцерных сварных соединений производится, как правило, гибким неохлаждаемым индуктором. Примеры намотки таких индукторов на штуцерные соединения приведены на рис. 17.7.

Для нагрева тройникового сварного соединения трубопровода большого диаметра (трубы диаметром 325 мм. штуцер 245 мм) током частотой 50 Гц используется индуктор из гибкого медного кабеля сечением 120-180 мм². Намотка кабеля производится по схеме рис. 17.7, а или 17.7, б. По первой схеме индуктор состоит из 12-14 витков. Витки, наматываемые на штуцер, удерживаются установочными штырями, которые привариваются к штуцеру. Нагрев производится от одного трансформатора ТДФЖ-2002. При использовании второй схемы нагрев производится двумя индукторами: основной индуктор наматывается на трубу двумя секциями по 8-10 витков в каждой, вспомогательный – на штуцер и состоит из 5-7 витков. Каждый индуктор питается от своего источника: основной - от трансформатора ТДФЖ-2002, вспомогательный – от трансформатора ТДФЖ-1002 (или от трансформаторов других типов такой же мощности).

На рис. 17.7, в приведена схема намотки гибкого индуктора для нагрева одновременно двух сварных соединений штуцеров малого диаметра (не более 100 мм) с коллектором диаметром 219—325 мм. Общее число витков индуктора 18—20, на каждый штуцер укладывается по 4—5 витков; сечение кабеля 90—150 мм².

При нагреве одного аналогичного сварного соединения индуктор из 10–11 витков такого же сечения наматывается по схеме рис. 17.7, *e*.

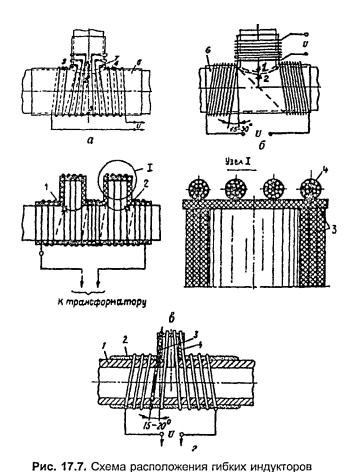
Ориентировочные технологические и электрические параметры термообработки сварных стыков труб гибкими неохлаждаемыми индукторами

	Наружный диа- метр трубы, мм	Толщина стен- ки труб, мм	Ширина индук- тора, мм	вит	цее чи гков г стоте,	при	Площ речн ния в при ч	юго с итка,	ече- мм ² ,	выв		метры е на , при				Потреблясмая мощность, кВт	конд тор бата мкФ	ость енса- ной ареи, при оте, Гц
	Ha We	<u> </u>	250- 8-12 10- 10- 150-				2400	8000	50	2400	8000	50	2400	8000	E	2400	8000	
	108– 168	11–36	250- 400	8–12	10- 14	10- 16	150- 185	50- 70	35- 50	15– 20	55– 85	80- 120	700- 900	160- 180	100- 120	8–15	200- 300	40 60
	194– 245	11–28	300 – 350	8–10	10- 12	12- 14	185– 240	50- 70	50- 70	20- 25	90– 100	130- 150	800- 950	170- 190	110- 125	1518	160- 200	30 – 35
		30–45	350 – 450	10 12	12- 16	14– 18				25– 30	100- 120		950 – 1100	190 – 200	125- 140	18–25	200- 250	35 45
	273– 377	11–20	350- 400	8–10	12- 14	14– 16	185– 240	70 – 95	50- 70	25– 30	120- 135	170- 180	900– 1000	170- 185	120- 135	18–22	110- 120	20- 25
		25–45	400 – 500	10- 12	14 16	16- 18	ľ			30- 35	135- 145	180– 195	1000- 1100	185– 200	135– 150	22–27	120- 135	25– 35
İ		50–60	500 – 550	12- 14	16- 18	18– 20				35 - 40	145– 160	195 – 220		200 – 220	150- 160	27–35	135 - 150	35- 40

Наружный диа- метр трубы, мм	Толцина стен- ки труб, мм	Ширина индук- тора, мм	Вит	цее чи гков г стоте,	три			ече- мм ² ,	выв		метры е на , при				Потребляемая мощность, кВт	конд тор бата мкФ	ость енса- ной ареи, , при оте, Гц
Η̈́Ν	Ţ	3	50	2400	8000	50	2400	8000	50	2400	8000	50	2400	8000	Ĭ	2400	8000
426- 530	16–36	400- 450	8–10	14– 16	16– 18	240	95– 120	70– 95	30- 35	150- 165	230- 250	1100– 1200	190– 210	130– 140		80 <u>–</u> 90	18– 22
	40–70	450 <u>–</u> 500	10- 12	16- 18	18– 20				35- 40	165- 180	250- 270	1200- 1300	210– 220	140– 155	30-40	90– 100	22– 26
	80–100	500– 600	12- 14	18 20	20- 22	į			40- 50	180- 200	270- 300	1300- 1400	220- 240	155– 170	4050	100- 110	26– 30
630- 1020	20–45	450– 500	10- 12	14- 16	16– 18	240	95- 120	70– 95	40- 50	190- 210	300- 330	1300– 1400	230– 250	150– 160	30-35	60– 70	12– 15
i	50-65	500 600	12- 14	16– 18	18– 20				50- 60	210- 230	330– 360	1400– 1500	250 - 270	160- 180	35–50	70– 85	15 20
	70–90	600 <u>-</u> 650	14– 16	18– 20	20– 22				60~ 70	230– 260	360- 400	1500– 1600	270 - 300	180- 200	50–65	85– 100	20 25

Примечание. На трубы диаметром 108–168 мм устанавливается одна секция индуктора на каждом стыке, в остальных случаях – по одной-две секции.

В обоих случаях нагрев производится от трансформатора ТДФЖ-2002.


При использовании в качестве источников питания сварочных трансформаторов регулирование режима нагрева производится с помощью дросселя или переключением ступеней обмотки трансформатора.

- 17.4.9. Термообработку стыков труб большого диаметра (более 900 мм) можно осуществлять с помощью двух трансформаторов ТДФЖ-2002. К каждому трансформатору присоединяются шесть—восемь витков гибкого индуктора из медного кабеля сечением 240 мм² по одной из схем, показанных на рис. 17.8. Трансформаторы должны быть подключены кабелями одинаковой длины и сечения к одним и тем же фазам сети через автоматические выключатели. При использовании преобразователей средней частоты термообработку стыков этих труб можно выполнять двумя индукторами сечением 95—120 мм², состоящими из пяти—семи витков каждый и соединенными последовательно. Индукторы устанавливаются симметрично оси стыка на расстоянии 70—90 мм один от другого.
- 17.4.10. Нагрев при термообработке стыков труб диаметром 465—720 мм (например, 465×56, 630×25, 630×80, 720×22 мм) током промышленной частоты можно производить от одного трансформатора ТДФЖ-2002 (ТСД-2000) с помощью 12—14-виткового индуктора, если расстояние между трансформатором и стыком не превышает 15 м, или от двух трансформаторов, подключенных по одной из схем, показанных на рис. 17.8.
- 17.4.11. При термической обработке сварных соединений труб с фасонными деталями применяют следующие технологические приемы, обеспечивающие равномерность нагрева:

на сварные соединения труб с арматурой устанавливают индукторы с разным шагом намотки витков (на элементы с большей толщиной стенки шаг витков меньше) или на арматуру устанавливают двухслойный индуктор, в котором между первым и вторым слоями имеются асбоцементные прокладки (рис. 17.9, *a*, *б*);

Ориентировочные технологические и электрические параметры термообработки при нагреве стыков труб тиристорными преобразователями частоты (инверторами) ИТ-100

Наружный диаметр трубы, мм	Толщина стенки трубы, мм	Общее число витков	Электри парам сети, пи инве	етры тающей	Электриче параметрь дуктора при тоте тока 12	ин- и час-	Ток кон- денсатор- ной бата- реи, А	Емкость конденсаторной батареи, мкФ	Индуктив- ность в це- пи индукто- ра, х10 ³ Гн
			напря- жение, В	ток, А	напряже- ние на вы- водах, В	ток, А			
133	15	8,0	165	60	60	180	230	80	0,5
219	40	12,0	160	100	110	240	320	120	1,0
273	50	10,0	170	95	95	260	360	160	1,0
325	60	16,0	155	155	175	250	360	140	0,5
426	96	16,0	160	190	240	210	370	140	-
426	96	16,0	240	125	265	235	290	100	-
630	25	14,0	150	100	160	160	230	100	0,5
630	25	16,0	230	80	280	250	370	120	_
920	35	14,5	205	300	350	200	> 400	120	

при нагреве угловых сварных соединений: а, б – нагрев тройниковых сварных соединений паропроводов (соединения штуцера большого диаметра с трубой): 1–5 – места расположения термоэлектрических преобразователей; 6 – тепловая изоляция; 7 – установочные штыри диаметром 6–8 мм, временно привариваемые для крепления индуктора; в – нагрев сварных соединений штуцеров малого диаметра с коллектором: 1, 2 – места расположения ТП; 3 – тепловая изоляция; 4 – неизолированный кабель; г – нагрев штуцерного сварного соединения коллектора: 1 – труба; 2 – тепловая изоляция; 3 – индуктор; 4 – штуцер

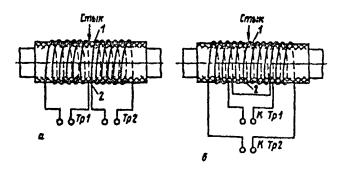
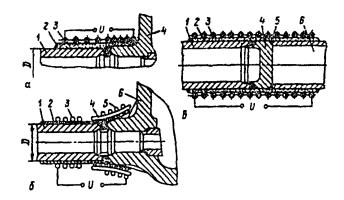



Рис. 17.8. Схемы подключения индукторов при нагреве стыка труб диаметром 980 мм: а – два шестивитковых односекционных индуктора; б – односекционный шестивитковый и двухсекционный (по три витка в секции) индукторы;

1, 2 - места расположения горячих спаев ТП

обработки сварных соединений фасонных изделий: а – соединение трубы с фланцем трубопровода: 1 – труба; 2 – теплоизоляция; 3 – индуктор с различным шагом витков; 4 – фланец; 6 – соединение трубы с патрубком задвижки: 1 – труба; 2 – теплоизоляция; 3 – первый слой индуктора; 4 – асбоцементная прокладка; 5 – второй слой индуктора; 6 – корпус задвижки; в – соединение трубы с заглушкой: 1 – труба; 2 – теплоизоляция; 3 – индуктор; 4 – заглушка; 5 – временные прихватки; 6 – фальшпатрубок

Рис. 17.9. Схемы установки индукторов для термической

при нагреве соединения трубы или коллектора с заглушкой к последней прихватывают отрезок трубы (фальшпатрубок) для возможности намотки индуктора как на обычное сварное соединение (рис. 17.9, в); после термообработки фальшпатрубок удаляют и места прихваток зачищают.

Радиационный и комбинированный способы нагрева Нагрев электронагревателем сопротивления (ГЭН)

17.4.12. При установке ГЭН на трубу следует:

закрепить (приварить) бобышки для установки горячих спаев ТП согласно требованиям подраздела 17.5;

установить и закрепить с помощью пояса электронагреватель на трубе;

присоединить к нагревателю токоподводящие провода от источника питания;

установить и закрепить тепловую изоляцию;

закрепить горячие спаи ТП в приваренные бобышки согласно требованиям подраздела 17.5 (предварительно надрезав теплоизоляцию в месте установки бобышки) и подключить провода ТП к регистрирующему прибору;

включить источник питания и провести нагрев по заданному режиму.

После установки нагреватель закрывается теплоизоляционным матом или асбестовой тканью и закрепляется проволокой или асбестовым шнуром; толщина теплоизоляции в зоне нагрева должна быть не менее 40 мм, ширина — на 400—500 мм больше зоны нагрева (в каждую сторону от шва); при отрицательной температуре окружающего воздуха толщина теплоизоляции должна быть увеличена в 1,5—2 раза.

17.4.13. Нагрев стыков может производиться с помощью двух или трех поясов ГЭН, схемы размещения которых даны в табл. 17.7 в зависимости от диаметра труб и положения стыка.

Пояса должны быть плотно прижаты к трубе и надежно закреплены. Толщина теплоизоляции на стыке должна быть равномерной по всей поверхности нагреваемого участка. Технологические параметры термообработки с помощью ГЭН приведены в табл. 17.8.

	Положение сварного	Диаметр нагреваемых	Схемы размещения		Pace	эинкот: мм	,
	стыка	труб, мм	поясов	A	Б	В	Γ
	Верти-	108–194	A±5 A±5 A±5	20	1	-	_
	кальное	219–245		20	35	25	-
•		273–299		20	40	30	_
		325–377	5±5 8±5 8±5	20	45	35	
		402–480		20	50	40	_
		530–630	A=5 A=5 A=5	20	60	50	-
		820–1020	6±5 8±5 8±5 A±5 A±5 A±5	20	80	60	-

Параметры термообработки с использованием электронагревателей сопротивления ГЭН А. Электронагреватели из одной секции в поясе

	Диаметр нагревае-	Толщина стенки	Марка элек- тронагре-	Число поясов		Параметр нагрева		Общая масса на-
	мой трубы, мм	трубы, мм	вателя	ГЭН	оптималь- ный ток, А	напряже- ние, В	мощность на- гревателя, кВт	гревателя, кг
	108	≤ 30	ГЭН-108	2	200	21,0	4,1	7,2
	133	≤30	ГЭН-133	2	200	24,0	4,8	8,4
		31–36		3	300	24,0	7,2	12,6
	159	≤30	ГЭН-159	2	200	26,0	5,2	9,3
		31–36		3	300	26,0	7,8	14,0
	168	≤30	ГЭН-168	2	200	27,5	5,5	9,7
		31–40		3	300	27,5	8,25	14,6
	194	≤30	ГЭН-194	2	200	31,0	6,2	11,0
		31–45		3	300	31,0	9,3	16,5
	219	≤30	ГЭН-219	2	200	33,0	6,6	11,8
į		31–50		3	300	33,0	9,9	17,7

245	≤ 30	ГЭН-245	2	200	36,5	7,3	13,0
	31–50		3	300	36,5	11,1	19,5
273	≤ 30	ГЭН-273	2	200	39,0	7,8	13,7
	31–50]_	3	300	39,0	11,7	20,5
325	≤ 30	ГЭН-325	2	200	45,0	9,0	16,0
1	31–50		3	300	45,0	13,5	24,0

Б. Электронагреватели, имеющие от 2 до 4 секций в поясе

Диаметр нагре- ваемой	Толщи- на стен- ки тру-	Число поясов ГЭН	вх	элен	Число строна их в со	греват	елей,	эн	Г	Іарамет _і нагрева		Общая масса нагрева-
трубы, мм	бы, мм		ГЭН- 133	ГЭН- 159	ГЭН- 168	ГЭН- 219	ГЭН- 273	ГЭН- 325	опти- мальный ток, А	напря- жение, В	мощность нагрева- теля, кВт	теля, кг
377	≤ 30	2	1	-	-	-	-	-	200	24,0	11,4	20,2
			-	_	-	1] - [_	200	33,0		
	31–50	3	1	-	-	-	-	_	300	24,0	17,1	30,3
			-	-	- 1	1	-	_	300	33,0		

Диаметр нагре- ваемой	Толщи- на стен- ки тру-	Число поясов ГЭН	ВХ	эле	Число строна их в со	греват	елей,	эн	Γ	Іараметі нагрева		Общая масса нагрева
трубы, мм	бы, мм		ГЭН- 133	ГЭН- 159	ГЭН- 168	ГЭН- 219	ГЭН- 273	ГЭН- 325	опти- мальный ток, А	напря- жение, В	мощность нагрева- теля, кВт	теля, кг
426	≤ 30	2	_	1	_	_	1	-	200	39,0	12,6	22,1
			1	_	-	_	-	_	200	24,0		}
	31–50	3	_	_	_	_	1	_	300	39,0	18,9	33,2
			1				-	-	300	24,0		
530	≤ 30	2	-	1	_	_	ı	1	200	45,0	14,5	25,7
			-	_	1	_	_	_	200	27,5		
	31–50	3	-	_	_	-	_	1	300	45,0	21,8	38,5
i		ļ 		_	1	_		_	300	27,5		
630	≤ 30	2	_	_	_		_	1	200	45,0	16,8	29,7
			-	-	-	-	1	-	200	39,0		
	31–50	3	_	_	_	-		1	300	45,0	25,2	44,5
			-		_	–	1	_	300	39,0		<u> </u>

۱	720	≤ 30	2	-	_	-	-	-	1	200	45,0	20,0	35,4
١				-	_	2	_	-	_	400	27,5		İ
		31–50	3	_	_	-	_	-	1	300	45,0	30,0	53,1
					_	2_		_		600	27,5		
ſ	820	≤ 30	2	1	_	1	_	-	1	200	45,0	22,2	39,6
1				_	_	-	2	-	_	400	33,0		
1		31–50	3	_	_	-	-	_	1	300	45,0	33,3	53,5
					_		2	_	-	600	33,0		
ſ	920	≤ 30	2	_	_		-	2		400	39,0	26,6	46,0
	i			-	2	-	_	_		400	27,5		
		31–50	3	_	-		_	2	-	600	39,0	39,9	67,0
1				-	2		-	-	-	600	27,5		
ſ	1020	≤30	2	-			_		2	400	45,0	27,6	48,8
				2	_	_	_	-	-	400	24,0	i	
1		31–50	3	-	-	_	_	-	2	600	45,0	41,4	66,0
		_		2	_			_		600	24,0		

Примечание. Длина пояса ГЭН при диаметре нагреваемой трубы более 325 мм складывается из двух и более последовательно расположенных секций ГЭН, суммарная длина которых равняется длине окружности термообрабатываемого сварного соединения.

Нагрев гибким радиационным электронагревателем (ГРЭН)

17.4.14. Секции нагревателя ГРЭН, набранные в соответствии с рекомендациями п. 17.3.12, устанавливаются и закрепляются на трубопроводе таким образом, чтобы сварной шов был посередине нагреваемого участка. Предварительно устанавливается на шве или рядом с ним горячий спай термоэлектрического преобразователя (термопары) согласно требованиям пп. 17.5.2—17.5.6. Секции нагревателя закрываются теплоизоляционным матом и подсоединяются к источнику питания (сварочному трансформатору или выпрямителю) по схеме, представленной на рис. 17.6.

Программный блок управления термопроцессом (БУТ) обеспечивает заданный температурно-временной режим нагрева термообрабатываемого сварного соединения. По требованию заказчика БУТ может быть выполнен в варианте для подключения радиационных нагревателей ГРЭН к питающей сети 220 В или сети постоянного тока либо для подключения нагревателей ГЭН и КЭН к сварочным трансформаторам.

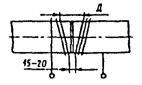
Нагрев электронагревателем комбинированного действия (КЭН)

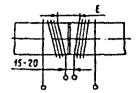
17.4.15. Секции КЭН необходимо устанавливать в положение, указанное в табл. 17.9 и 17.10.

Для обеспечения равномерного распределения температуры по периметру сварного соединения и креплений секций КЭН на трубах используются те же способы, что и при применении ГЭН. При установке КЭН секции должны наматываться обязательно одинаково (по часовой или против часовой стрелки); не следует накладывать витки один на другой. Размеры теплоизоляции должны соответствовать требованиям п. 17.4.12.

17.4.16. Секции, установленные на одном сварном соединении, должны подсоединяться к источнику питания, как правило, параллельно. Допускается последовательное соединение двух-трех секций нагревателя КЭН-1 и двух секций нагревателя КЭН-2.

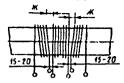
17.4.17. Для термической обработки сварных соединений труб больших диаметров (1020 мм и более) могут быть использованы нагреватели ГЭН и КЭН-4. Для уменьшения теплоотвода из зоны нагрева и снижения перепада температуры по толщине стенки необходимо применять следующие технологические приемы:

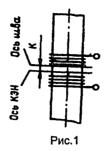

увеличивать зону нагрева сварных соединений путем установки на наружной поверхности труб дополнительных поясов ГЭН или секций КЭН-4:


устанавливать на внутренние поверхности сварных соединений электронагреватели ГЭН и КЭН-4 (если есть доступ внутрь нагреваемых труб).

Групповая термообработка стыков труб с помощью электронагрева

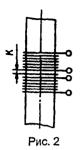
- 17.4.18. Групповая термообработка стыков, т. е. одновременный нагрев нескольких сварных соединений от одного источника питания, может производиться как с помощью индукторов, так и с помощью радиационных и комбинированных электронагревателей. Групповой термообработке с нагревом газовым пламенем могут подвергаться только стыки труб поверхностей нагрева котла, собранные в блоки (см. п. 17.4.25).
- 17.4.19. При групповой термообработке стыков труб необходимо выполнять следующие требования:
- а) трубы должны быть одинакового размера (диаметра и толщины стенки), из стали одной марки и иметь одинаковую исходную температуру;
- б) все сварные соединения подвергаются термообработке по одному и тому же режиму;
- в) стыки должны иметь одинаковую теплоизоляцию и условия теплоотвода;
- г) все стыки должны нагреваться с ломощью одинаковых электронагревателей. Индукторы должны иметь одинаковое число витков, шаг намотки и сечение витка; когда стыки расположены на незначительном расстоянии один от другого (не более 1–1,5 м) на одном трубопроводе, следует обеспечить

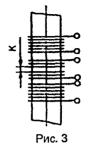

Размещение секций КЭН


ваемо	ры нагре- ого стыка уб, мм			5·. 1·= 1·			ì	Марка э	лектро
диа- метр	макси- мальная толщина	кэ	H-1	кэ	H-2	кэ	н-з	кэн	1-4-1
i i	стенки						pa	сстоян	ие, мм,
		Д	E	Д	E	Д	E	Д	E
До 108	До 20	20	_		-	_	-	_	-
108	2130	1	20	20	-	-	1		-
133- 194	До 30 31-50	1	=	20 20	_ 20	-		_	_
219	До 30 31–50		-	20	20 20	20 20	-		-
245- 325	До 30		_			40- 50	-		-
	31~50	1	-	1	1	40- 50	40- 50	I	_
377 - 530	До 30 31–50	1 1	1 1	1 1	1 1	1 1	1 1	50– 70 –	50– 70 50– 70
630- 820	До 30	-	_	-	-	-	-	_	80– 100
	31–50	-		-	-	_		-	80 - 100
920 - 1020	До 30	-	-	_	-	_	-	-	-
1020	31–50	-	-	-	-	-	_	-	-

на вертикальных стыках труб

нагре	Общая ши- рина намот- ки, мм,						
		не менее					
не бол							
Ж	Д	E	Ж	Д	E	Ж	
	_	-	1	_	1	-	250
	_	_		-	_	_	400
-	-	-	-	-		1 1	250 600
1 1	<u> </u>	1 1	-	-	-	1 1	400 600
_	_	-	-	-	_	-	400
-	-	-	-		_		600
	50-	50-		50-	_	_	400
-	70 -	70 50– 70		70 50– 70		_	600
80-		80-	80-	80-	80-	-	400
100 80– 100	_	100 80– 100	100 80– 100	100 80– 100	100 80– 100	-	600
_	_	-	100– 120	-	100- 120	100- 120	400
_	_	_		_	100- 120	100- 120	600


Размещение секций КЭН на



грев	еры на- заемого труб, мм					Марка
диа- метр	макси- мальная толщина	кэн-1		кэ	H-2	кэн-з
	стенки	номер рисунка	рассто- яние <i>К</i> , мм	номер рисунка	рассто- яние <i>К</i> , мм	номер рисунка
До 108	До 20	1	10–15	-	-	-
108	21–30	2	10–15	_	I	-
133-	До 30	-	_	1	10–15	-
194	31–50	_	-	1; 2	10–15	_
219	До 30	_	_	1; 2	10–15	1
{	31–50		-	2	10–15	1
245-	До 30	1	-	_	-	1
325	31–50		_	_	-	1; 2
377-	До 30		-	_	_	-
530	31–50			_		_
630-	До 30		_		_	_
820	31–50			_		-
920-	До 30	_			_	-
1020	31–50					

Примечание. К – расстояние между осью шва и КЭН.

горизонтальных стыках труб

электронагревателя										
	кэ	1-4-1	кэн	H-4-2	КЭН	мотки, мм, не менее				
рассто- яние <i>К</i> , мм	номер рассто- рисун- яние <i>К</i> , ка мм		номер рисун- ка	рассто- яние <i>К</i> , мм		рассто- яние <i>К</i> , мм				
_	-	-	-	1	1	-	250			
_	1	1	1	1	1	1	400			
-	_	-	_	-	-	1	250			
		_	_		_		600			
10–15	-	_	-	-	-	-	400			
10–15	_		_		-	-	600			
10–15	1	-	-	-	-	1	400			
10–15	1; 2	10–15	1; 2	10–15	1	10–15	600			
-	2	15–20	2	15-20	1	1520	400			
	2	15–20	2	15–20	1	1520	600			
_	2; 3	15–20	2; 3	15–20	1; 2	15–20	400			
	2; 3	15–20	2; 3	15–20	1; 2	15–20	600			
-	_	_	3	15–20	2; 3	15–20	400			
_	-	_	_		2; 3	1520	600			

совпадение направления намотки витков индуктора. Электронагреватели ГЭН должны иметь одинаковую длину, ширину и число поясов, число и размеры нагревательных элементов и должны устанавливаться на стыки по одной схеме.

При групповой термообработке индукторы следует подключать последовательно, а электронагреватели сопротивления — параллельно.

17.4.20. Групповой нагрев с помощью индукторов сварных соединений приварки донышек к штуцерам коллекторов по режиму высокого отпуска можно производить от трансформатора ТДФЖ-2002 или преобразователей средней частоты при последовательном соединении индукторов. От трансформатора ТДФЖ-2002 можно одновременно нагревать до пяти стыков приварки донышек к штуцерам диаметром 108—168 мм, от преобразователей средней частоты — три-четыре стыка. Для симметричной установки индуктора относительно сварного шва к донышку временно прихватывают патрубок (отрезок трубы) длиной 200—300 мм того же диаметра, что и диаметр штуцера коллектора. По окончании термообработки этот патрубок удаляют.

Схема одновременного нагрева током частотой 50 Гц двух стыков приварки донышек к штуцерам коллекторов с помощью гибких индукторов, каждый из которых состоит из шести-семи витков сечением 90—120 мм², показана на рис. 17.10. Напряжение на общих выводах составляет 45—55 В, ток — 1000—1200 А.

17.4.21. Замер температуры сварного соединения при групповой термообработке должен производиться не менее чем на двух стыках с соблюдением требований, изложенных в подразделе 17.5.

17.4.22. Основные технологические и электрические параметры групповой термообработки стыков с помощью нагрева гибкими индукторами приведены в табл. 17.11, а с использованием в качестве источника питания тиристорного преобразователя — в табл. 17.12.

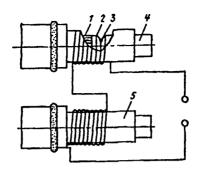


Рис. 17.10. Схема подключения гибких индукторов при одновременном нагреве двух донышек штуцеров коллекторов: 1 — термообрабатываемый шов приварки донышка к штуцеру коллектора; 2 — донышко штуцера коллектора; 3 — прихватка; 4 — временно прихваченная труба; 5 — теплоизоляция (асбест)

Газопламенный способ нагрева

17.4.23. При термообработке по режиму нормализации (T_{TO} = 940–960 °C) стыки труб диаметром до 100 мм можно нагревать газопламенным способом горелками с наконечниками № 6 и 7.

17.4.24. Для нагрева стыка на трубу предварительно устанавливают воронку из листового асбеста или специальную теплоизоляционную манжету. Нагрев производят двумя горелками, пламя которых вводят внутрь воронки или манжеты для равномерного распределения температуры по периметру стыка.

17.4.25. Допускается групповой нагрев стыков труб диаметром 30—48 мм. В этом случае используют металлические воронки панельного типа, выложенные с внутренней поверхности листовым асбестом (рис. 17.11). Для замедленного охлаждения сварного стыка после окончания термообработки на него надвигают асбестовую манжету толщиной 8—12 и длиной 150 мм.

Технологические и электрические стыков труб

Наруж- ный диа- метр нагрева- емых труб, мм	Тол- щина стенки труб, мм	Число одновре- менно нагре- ваемых сты- ков	Шири- на ин- дукто- ра, мм	Число секций индук- тора на каждом стыке	Расстояние между сек-циями, мм	Число вит- ков индукто- ра на один стык	
							при
						50	2400
108–168	До 36	5–6	150– 200	1	-	6–7	-
		56	200– 250	1	_	-	910
194–245	До 45	2–3	250- 350	1–2	45–60	8–9	-
		2–3	250– 350	1–2	45–60	-	9–12
273–377	До 60	2–3	300– 400	1–2	55–85	8–9	-
		2–3	300– 400	1–2	55–85	-	9–10
426–630	До 90	2–3	300– 500	1–2	75– 100	-	8–12

Примечание. Стыки труб диаметром 273 мм и более с разователя частоты мощностью 250 кВт (УТ-250), остальные – от последовательное.

параметры групповой термообработки гибкими индукторами

Площадь поперечного сечения вит- ка индукто- ра, мм ²			жение зодах, В	Электрич параме индукт ток	тры ора	ебля- мощ-	Емкость конденса- торной батареи, мкФ, при частоте 2400 Гц	
<u> иастот</u>	е тока,	 Ги		L		ность	, KBT	2400 ГЦ
50	2400	50	2400	50	2400	50	2400	
150- 185	-	65– 75	-	1200– 1300	-	62- 80	-	-
_	50- 70	1	180– 210	-	180– 200	-	32- 42	30–40
185– 240	1	65– 75	_	1300– 1400	-	68– 85	-	_
_	50– 70	-	230– 260	-	200– 230	-	46- 60	15–25
185– 240	1	65– 75	-	1300– 1400	-	68– 85	-	_
_	70– 95	-	230- 260		210- 230	-	48 <u>–</u> 60	25–35
-	95– 120		230– 260	-	210– 230	-	48– 60	35 –50

толщинами стенок более 50 мм нагреваются от машинного преобпреобразователя мощностью 100 кВт. Соединение индукторов

Основные технологические и электрические параметры режима нагрева при групповой термообработке стыков труб тиристорными преобразователями частоты (инверторами)

Наружный диаметр и толщина стенки труб, мм	Число од- новремен- но нагре- ваемых стыков	Число витков на од- ном стыке	Пусковая частота тока, Гц	Электрические параметры сети, питающей инвертор		Ток кон- денсатор- ной бата- реи, А	Емкость конденса- торной батареи, мкФ	Электрическ параметры индуктора	ol .
				напряже- ние, В	ток, А			напряжение на выводах, В	ток, А
133×15	4	8	1600	165	75	220	100	115	165
159×13	6	9	1600	150	190	290	100	190	170
219×40	2	13	2400	155	200	340	120	160	225
219×40	3	13	1600	155	180	320	160	200	170
273×50	2	10	1600	240	160	450	120	200	300
325×60	2	10	1600	235	145	360	120	235	295
426×30	2	12	1600	245	100	240	80	220	170

Примечание. Стыки труб диаметром 273×50 и 325×60 мм нагреваются от тиристорного преобразователя частоты мощностью 250 кВт, остальные – от преобразователя мощностью 100 кВт. Соединение индукторов последовательное.

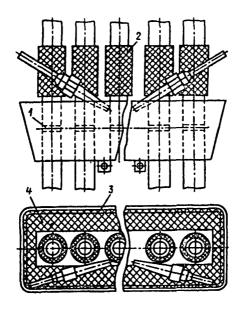


Рис. 17.11. Схема групповой термообработки стыков труб поверхностей нагрева котлов газопламенным способом двумя горелками: 1 — обрабатываемый стык; 2 — асбестовая манжета; 3 — металлическая воронка; 4 — асбестовая изоляция

17.5. Контроль температуры при термообработке

17.5.1. Температура сварного соединения во время термообработки по режиму высокого отпуска контролируется хромельалюмелевыми термоэлектрическими преобразователями (термопарами) (ТП) с автоматическими регистрирующими потенциометрами (далее по тексту — потенциометрами). Температуру следует регистрировать во время нагрева, выдержки и охлаждения стыка до 300 °C.

Показывающие приборы (милливольтметры) можно применять для контроля температуры стыков труб с толщиной стенки менее 20 мм, при этом измерять и записывать температуру

должен оператор через каждые 30 мин во время нагрева и выдержки.

При нагреве стыка газопламенным способом горячий спай ТП должен быть защищен тепловой изоляцией от непосредственного воздействия пламени горелки.

Температуру трубы при нормализации можно измерять пирометрами излучения, позволяющими определять температуру металла трубы в пределах $800-1400\,^{\circ}\text{C}$ с погрешностью $\pm 12-15\,^{\circ}\text{C}$ (при применении ОППИР- $017-\pm 20\,^{\circ}\text{C}$).

Технические данные хромель-алюмелевых термоэлектрических преобразователей и термоизмерительных приборов приведены в приложениях 22 и 23 соответственно.

17.5.2. Горячий спай ТП следует устанавливать на шве или трубе на расстоянии не более 30 мм от шва; ТП крепится к поверхности трубы способами, показанными на рис. 17.12.

17.5.3. При нагреве вертикального стыка труб диаметром менее 400 мм индукционным способом устанавливают один ТП в верхней части стыка, при диаметре труб 400 мм и более – два (в верхней и нижней частях стыка). На горизонтальном стыке устанавливают один ТП в любом месте по периметру независимо от диаметра труб (табл. 17.13). При групповом нагреве стыков труб диаметром не более 200 мм может быть установлен один ТП на одном из нагреваемых стыков при условии строгого выполнения требований, приведенных в п. 17.4.19.

При групповом нагреве стыков труб большего диаметра ТП необходимо устанавливать на каждом стыке.

17.5.4. При термообработке сварного соединения труб (элементов) разной толщины при разности толщины более 7 мм ТП устанавливают на каждой трубе (элементе) на расстоянии 10—30 мм от шва независимо от способа нагрева. Если термообрабатывается вертикальный стык разностенных труб наружным диаметром 400 мм и более, то устанавливается три ТП: два в верхней части стыка на обеих трубах и один в нижней части на более толстой трубе.

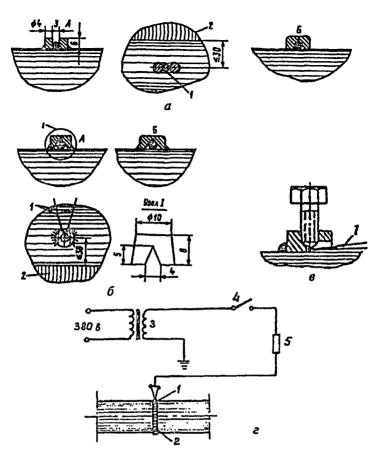


Рис. 17.12. Способы крепления горячего спая термоэлектрического преобразователя к трубе: а — между двумя наплавленными бобышками (A), которые потом расчеканиваются (Б); б — под бобышку с прорезью (A), которая потом расчеканивается (Б); в — с помощью болта и гайки; г — путем приварки горячего спая контактным разрядом тока от сварочного трансформатора; 1 — горячий спай ТП;

- 2 сварной шов, подлежащий термообработке;
- 3 сварочный трансформатор; 4 рубильник; 5 плавкий предохранитель на 15 A

Таблица 17.13
Установка горячего спая термоэлектрических преобразователей при термической обработке стыков труб одинаковой толщины

		Располо	жение термоэлектрич	неских преобразователей (ТП)			
Способ	на верті	кальном с	тыке труб	на горизонтальном стыке труб			
нагрева	наружный диа- метр труб, мм	число схемы установки ТП горячего спая ТП		наружный диа- метр труб, мм	число ТП	схемы установки горячего спая ТП	
Индукци- онный	Менее 325 1		Любой	1	7/1		
	325 и более	2					
Радиаци- онный	Менее 200	1		Менее 200	1	1 70	
	200 и более	2		200 и более	2	7/1	
Газопла- менный	Любой	2	The state of the s	Любой	2	70	

- 17.5.5. При нагреве стыков труб диаметром менее 200 мм электрическими радиационными нагревателями сопротивления устанавливают один ТП на вертикальном стыке в верхней части, на горизонтальном в любом месте; при нагреве стыков труб диаметром более 200 мм на вертикальном стыке устанавливают два ТП на верхнем и нижнем участках, на горизонтальном в двух любых диаметрально противоположных местах, при этом ТП укладывают по поверхности трубы, а участок ТП длиной 250—300 мм вместе с его рабочим концом (горячим спаем) дополнительно защищают от воздействия тепла, исходящего от нагретой трубы.
- 17.5.6. При индукционном способе нагрева и использовании потенциометров для снижения вредного влияния электромагнитного поля индуктора на их показания следует устанавливать ТП перпендикулярно магнитному полю индуктора (т. е. оси трубы).
- 17.5.7. Рабочий конец (горячий спай) ТП следует сваривать аргонодуговой сваркой неплавящимся электродом; допускается также дуговая или газовая сварка с флюсом (бурой). При сварке нельзя вводить в рабочий конец ТП какой-либо присадочный металл.
- 17.5.8. До установки ТП на рабочее место его нужно проверить способом «горящей спички» или «кипящей воды». Свободные концы ТП подключают к потенциометру, затем рабочий конец при первом способе нагревают пламенем зажженной спички, а при втором опускают в кипящую воду. Хромельалюмелевый ТП в первом случае должен показывать около 400—450 °C, во втором 100 °C. Неподвижность стрелки прибора при испытании означает, что электроды ТП сделаны из одного материала.
- 17.5.9. Термоэлектрические преобразователи независимо от способа нагрева стыка необходимо устанавливать так, чтобы их свободные концы не нагревались.
- 17.5.10. Длина нагреваемого участка ТП в области высоких температур должна быть не более 150 мм.

- 17.5.11. Подключение ТП к приборам выполняется с помощью соединительных удлиняющих термоэлектродных проводов. Марка провода должна соответствовать типу ТП, подбирать ее необходимо в соответствии с данными приложения 24.
- 17.5.12. Соединять ТП с термоэлектродным проводом необходимо с помощью винтовых муфт или другим надежным способом; соединение посредством скрутки не допускается. При наращивании термоэлектродного провода участки могут быть соединены скруткой с обязательным пропаиванием (без кислоты).
- 17.5.13. При подсоединении ТП к прибору термоэлектродными проводами следует соблюдать полярность, т. е. соединять материалы одинакового потенциала: плюс с плюсом, минус с минусом. Положительным потенциалом обладает хромель, отрицательным алюмель (хромель в отличие от алюмеля не притягивается магнитом). Материал жил термоэлектродного провода легко определяется по красному цвету медной жилы или по цвету оплетки. На приборе в месте подключения термоэлектродного провода на контактной колодке обязательно должны быть поставлены знаки «+» и «—».
- 17.5.14. Термоэлектродные провода следует по возможности прокладывать вдали от электрических кабелей и мест перемещений оборудования. В целях снижения вредного влияния электромагнитных переменных полей на показания электронных потенциометров допускается только перпендикулярное пересечение термоэлектродным проводом электропроводов.
- 17.5.15. При измерении температуры милливольтметром следует учитывать температуру холодного спая (окружающего воздуха):

при отрицательной температуре воздуха показания милливольтметра должны равняться арифметической сумме заданной температуры нагрева и температуры окружающего воздуха;

при положительной температуре показания милливольтметра должны равняться разности между заданной температурой нагрева и температурой окружающего воздуха; при этом мил-

ливольтметр может быть скорректирован на температуру окружающего воздуха (стрелку милливольтметра устанавливают с помощью корректора на значение температуры воздуха, предварительно закоротив выводы ТП).

18. КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

18.1. Общие положения

18.1.1. В процессе изготовления, монтажа и ремонта трубопроводов и трубных систем котлов необходимо осуществлять систематический контроль качества сварочных работ и сварных соединений — предварительный контроль (включая входной контроль), операционный контроль и приемочный контроль сварных соединений.

Требования к методам, объемам и объектам предварительного контроля, включающего проверку аттестации персонала, проверку оборудования и аппаратуры, контроль основных и сварочных материалов, а также требования к операционному контролю сборочно-сварочных работ, изложены в соответствующих разделах настоящего РД.

Результаты по каждому виду предварительного и операционного контроля должны оформляться отдельными документами или фиксироваться в журналах организации, выполняющей этот контроль.

Результаты приемочного контроля сварных соединений оформляются в соответствии с требованиями раздела 21.

18.1.2. Приемочный контроль сварных соединений труб котлов и трубопроводов, на которые распространяются правила Госгортехнадзора России, включает следующие виды:

визуальный и измерительный контроль; стилоскопирование деталей и металла шва; измерение твердости металла шва; ультразвуковая и радиографическая дефектоскопия; механические испытания; металлографические исследования; контроль прогонкой металлического шара; капиллярный или магнитопорошковый контроль; гидравлические испытания.

18.1.3. Контроль качества сварных соединений трубопроводов, на которые не распространяются правила Госгортехнадзора России, должен осуществляться с помощью визуального и измерительного, ультразвукового или радиографического контроля и механических испытаний, если другие методы контроля не оговорены соответствующими СНиП, чертежами или техническими условиями на изготовление и монтаж этих трубопроводов.

Контроль качества сварных соединений котлов, подпадающих под действие Правил устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см²), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 388 К (115 °C), производится в соответствии с этими правилами.

- 18.1.4. Назначение и применение методов контроля, их объемов и сочетания регламентируются настоящим РД в соответствии с правилами Госгортехнадзора России и СНиП, а также ведомственными нормативными актами, если иное не оговорено чертежами или техническими условиями на изготовление, монтаж и ремонт конкретного изделия.
- 18.1.5. Контроль качества угловых соединений штуцеров (труб) с коллекторами и трубопроводами, выполненных по технологии, регламентированной в подразделе 7.7 настоящего РД, производится в соответствии с требованиями этого подраздела.
- 18.1.6. Контроль сварных соединений (за исключением стилоскопирования) должен производиться после термической обработки стыков. Рекомендуется осуществлять операции по контролю готовых сварных соединений в той последовательности, в какой они изложены в настоящем разделе. Ультразвуковой или радиографический контроль следует выполнять пос-

ле визуального контроля сварных соединений и устранения недопустимых наружных дефектов.

Сроки выполнения контрольных операций должны быть минимальными с тем, чтобы была обеспечена возможность исправления дефектов без нарушения последовательности технологии монтажа или ремонта изделия.

- 18.1.7. Объем испытаний и количество контрольных сварных соединений, а также объем контроля производственных сварных соединений, в том числе неразрушающими методами, могут быть уменьшены по согласованию с органом Госгортехнадзора России в случае массового изготовления, монтажа и ремонта изделий с однотипными сварными соединениями* при неизменном технологическом процессе, специализации сварщиков на определенных видах работ и высоком качестве работ, подтвержденном результатами контроля за период не менее шести месяцев.
- 18.1.8. Обоснованные отступления от требований настоящего раздела РД в части оценки качества сварных соединений для объектов Минэнерго России могут быть допущены по согласованию с ЗАО «Прочность МК» в пределах, предусмотренных приложением 29, для конкретных сварных соединений, для других объектов по согласованию с любой специализированной научно-исследовательской организацией в области сварки и контроля, приведенной в приложениях к правилам Госгортехнадзора России.
- 18.1.9. Все перечисленные виды и методы контроля должны осуществлять организации, получившие разрешение (лицензию) органов госгортехнадзора на право проведения контрольных работ.
- 18.1.10. Использованные в настоящем РД термины и определения, касающиеся контроля качества сварных соединений, приведены в приложении 30.

^{*} Определение однотипности сварных соединений приведено в приложении 10.

18.2. Стилоскопирование деталей и металла шва

18.2.1. При монтаже и ремонте изделий, на которые распространяются правила Госгортехнадзора России, стилоскопированию подлежат:

все свариваемые части конструкций и деталей (трубы, арматура, переходы, отводы, тройники, штуцера, бобышки и др.) независимо от наличия сертификата, маркировки и предстоящего срока эксплуатации, которые должны быть по проекту выполнены из легированной стали (кроме низколегированных конструкционных), при этом устанавливают соответствие марки стали контролируемых изделий марке, указанной в чертежах или ТУ, и определяют содержание характерных легирующих элементов. Стилоскопирование свариваемых деталей производят перед сборкой или непосредственно в процессе сборки, а также после окончания монтажа (ремонта) трубопровода или агрегата в целом. Результаты стилоскопирования основного металла должны отвечать требованиям, приведенным в приложении 25:

металл шва сварных соединений, выполненных легированным присадочным материалом, в объеме 100% стыков трубопроводов, 20% стыков труб поверхностей нагрева и 10% угловых сварных соединений (приварки к коллекторам и трубам штуцеров, бобышек, деталей креплений и др.) каждого котлоагрегата. Стилоскопирование металла шва выполняется до термообработки сварных соединений (за исключением случаев, оговоренных в п. 17.1.3).

- 18.2.2. При выполнении стилоскопирования деталей и металла шва следует руководствоваться РД 34 10.122—94 с занесением результатов проверки в журнал по стилоскопированию.
- 18.2.3. Стилоскопирование следует производить на зачищенных до металлического блеска участках (площадках) поверхности. Сварные соединения, которые выполняли одновременно два сварщика, необходимо стилоскопировать на двух диаметрально противоположных участках шва. В остальных случаях стилоскопирование можно осуществлять на одном участке.

Требования к результатам стилоскопирования металла шва в зависимости от марки присадочного материала приведены в табл. 18.1.

- 18.2.4. При неудовлетворительных результатах контроля производят количественный спектральный или химический анализ деталей и металла шва, результаты которого считают окончательными.
- 18.2.5. Результаты стилоскопирования металла шва фиксируют в журнале контроля и оформляют протоколом по форме П27.17 приложения 27.

18.3. Визуальный и измерительный контроль*

- 18.3.1. Визуальному контролю подвергаются все законченные сварные соединения, на которые распространяется настоящий РД независимо от марки стали, типа сварного соединения, назначения и условий работы, включая сварные соединения, не работающие под давлением (приварка к трубам шипов, плавников и деталей газоплотных панелей, элементов опор, подвесок и др.).
- 18.3.2. Перед визуальным контролем сварные швы и прилегающая к ним поверхность основного металла шириной не менее 20 мм (по обе стороны шва) должны быть очищены от шлака, брызг расплавленного металла, окалины и других загрязнений.
- 18.3.3. Визуальный контроль производится невооруженным глазом или с помощью лупы 4—7-кратного увеличения для участков, требующих уточнения характеристик обнаруженных дефектов, с применением, при необходимости, переносного источника света.

^{*} Визуальный и измерительный контроль сварных соединений при монтаже и ремонте оборудования ТЭС, изготовлении отдельных его элементов, а также входном контроле основных и сварочных материалов, материалов для дефектоскопии выполняется согласно требованиям настоящего РД. При технической диагностике и экспертном обслодовании оборудования визуальный и измерительный контроль должен производиться в соответствии с «Инструкцией по визуальному и измерительному контролю» РД 34 10.130—96.

Требования к результатам стилоскопирования металла шва (наплавленного металла)

1	Трисадочный материал	Результаты стилоскопирования
электрод	сварочная проволока (ГОСТ 2246)	
ТМЛ-1У	Ca-08MX	Наличие молибдена, от- сутствие ванадия и со- держание хрома*
ЦУ-2ХМ, ЦЛ-38	Св-08ХМ, Св-08ХМА-2, Св-08ХГСМА	То же
ЦЛ-20М, ЦЛ-20, ТМЛ-3У, ЦЛ-39, ЦЛ-45	Св-08ХМФА, Св-08ХМФА-2, Св-08ХГСМФА	Наличие ванадия и мо- либдена, отсутствие нио- бия и содержание хрома* и марганца. Содержание марганца более 1% не- допустимо
ЦЛ-57	-	Отсутствие никеля. Наличие ванадия, марганца, молибдена. Содержание хрома (8,5–10,5%)
-	Св-10Х9НМФА	Наличие ванадия, нике- ля, молибдена. Содержа- ние хрома (8,5–9,6%)
_	Св-10Х9ГСНМФ	Наличие ванадия, нике- ля, молибдена. Содержа- ние хрома (8,5–9,6%) и марганца (1,2–1,8%)
_	Св-12Х11НМФ	Содержание хрома (10,5– 12%), наличие никеля, молибдена, ванадия

	Трисадочный материал	Результаты стилоскопирования
электрод	сварочная проволока (ГОСТ 2246)	
_	Св-10Х11НВМФ	Содержание хрома (10,5– 12%), молибдена (1– 1,3%), вольфрама (1– 1,4%), наличие никеля, ванадия
_	Св-01X19Н9, Св-04X19Н9	Отсутствие молибдена, ванадия и ниобия и со- держание хрома (18– 20%), никеля (8–10%)
-	Св-06X19H9T	Отсутствие молибдена, ванадия и ниобия, со- держание хрома (18– 20%), никеля (8–10%), наличие титана
ЦТ-26, ЦТ-26М	Св-04X19H11M3	Отсутствие ванадия и содержание хрома (14–21%), никеля (7–12%) и молибдена (1,5–3%)
ЭА-400/10У, ЭА-400/10Т	-	Содержание хрома (16– 19%), никеля (9–12%), молибдена (2–3,1%), мар- ганца (1,5–3%) и ванадия (0,3–0,75%)
ЦТ-15, ЦТ-15К, ЦТ- 15-1	Св-08Х19Н10Г2Б, Св-04Х20Н10Г2Б	Содержание хрома (16– 24%), никеля (9–14%), марганца (1–2,5%) и на- личие ниобия
ЦЛ-25, ОЗЛ-6, ЗИО-8	Св-07Х25Н13	Отсутствие молибдена, ванадия и ниобия и со- держание хрома (22– 27%), никеля (11–14%)

Г]рисадочный материал	Результаты стилоскопирования			
электрод	сварочная проволока (ГОСТ 2246)				
ЭА-395/9, ЦТ-10, НИАТ-5	Св-10Х16Н25АМ6	Содержание хрома (13– 17%), никеля (23–27%) и молибдена (4,5–7%)			
цл-э	-	Содержание хрома (21– 26%), никеля (11–14%), марганца (1,2–2,5%) и наличие ниобия			
ЦТ-45	Св-03Х20Н45Г6М6Б-ВИ	Содержание хрома (18,5— 22%), никеля (43—48%), молибдена (5,5—7,5%), марганца (5—7%), ниобия (1,6—2,2%)			

^{*} Производится с целью не допустить ошибочного использования высоколегированных присадочных материалов (с содержанием хрома свыше 4%) для сварки изделий из стали перлитного класса.

Примечание. С помощью переносного стилоскопа процентное содержание никеля может быть определено при наличии его в металле не более 20%. При большем содержании никеля точное его количество не определяется и в протоколе на проверку присадочного материала (см. приложение 27, форма П27.17) пишется: «никеля более 20%».

18.3.4. Недопустимыми дефектами, выявленными при визуальном контроле сварных соединений, являются: трещины всех видов и направлений; непровары (несплавления) между основным металлом и швом, а также между валиками шва; наплывы (натеки) и брызги металла; незаваренные кратеры; свищи; прожоги; скопления включений.

18.3.5. Нормы на допустимые дефекты приведены в табл. 18.2. Нормы на дефекты в корне шва, выявляемые при визуальном контроле в случае возможности осмотра стыков изнутри трубы (выпуклость, вогнутость и непровар корня шва), должны отвечать нормам на эти дефекты, выявляемые при радиографическом контроле (см. табл. 18.6—18.9).

- 18.3.6. Измерительный контроль сварных соединений (определение размеров швов, смещения кромок, переломов осей, углубпений между валиками, чешуйчатости поверхности швов и др.) следует выполнять в местах, где допустимость этих показателей вызывает сомнения при визуальном контроле, если в ПТД нет других указаний. Размеры и форма шва проверяются с помощью шаблонов, размеры дефекта с помощью мерительных инструментов.
- 18.3.7. Корневая часть шва должна подвергаться визуальному контролю до заполнения остальной части шва. Этот контроль проводится сварщиком после зачистки поверхности корня шва. Результаты контроля считаются удовлетворительными, если не обнаружены трещины, незаваренные прожоги и кратеры, скопления включений, превышающие нормы табл. 18.2, и другие дефекты, свидетельствующие о нарушении режима сварки или о недоброкачественности сварочных материалов. При обнаружении недопустимых дефектов вопрос о продолжении сварки или способе исправления дефектов должен решать руководитель сварочных работ.
- 18.3.8. Результаты визуального контроля угловых сварных соединений штуцеров (труб) с коллекторами и трубопроводами считаются удовлетворительными, если выдержаны требования, приведенные в табл. 18.2, а также в подразделе 7.7.

Сварные соединения штуцеров с коллекторами или трубопроводами из хромомолибденованадиевой стали, не подвергающиеся после сварки термообработке, необходимо, кроме того, проверять в объеме не менее 10% путем измерений с помощью шаблона размеров и формы шва; при этом должно быть обращено особое внимание на плавность перехода от шва к поверхности штуцера в соответствии с требованиями, изложенными в п. 7.7.10.

Нормы допустимых поверхностных дефектов, выявляемых при визуальном контроле сварных соединений

Дефект	Размерный пока- затель сварного соединения*, мм	Допустимый максимальный размер де-фекта, мм	Допустимое число дефек- тов на любых 100 мм шва
Отступления от размеров и формы шва	Независимо	По п. 6.5.7	-
Западания (углубления)	От 2 до 4 включи- тельно	1,0	Не ограничи- вается
между вали- ками и че-	Свыше 4 до 6 включительно	1,2	
шуйчатость	Свыше 6 до 10	1,5	
поверхности шва	включительно Свыше 10	2,0	
Одиночные включения	От 2 до 3 включительно	0,5	3
	Свыше 3 до 4 включительно	0,6	4
	Свыше 4 до 5 включительно	0,7	4
' !	Свыше 5 до 6	0,8	4
	включительно Свыше 6 до 8	1,0	5
	включительно Свыше 8 до 10	1,2	5
	включительно Свыше 10 до 15	1,5	5
	включительно Свыше 15 до 20	2,0	6
	включительно Свыше 20 до 40	2,5	7
	включительно Свыше 40	2,5	8

Дефект	Размерный пока- затель сварного соединения*, мм	Допустимый максимальный размер дефекта, мм	Допустимое число дефек- тов на любых 100 мм шва
Подрезы основного металла	Независимо	0,2**	1
Отклонения от прямоли- нейности сварных стыков труб	Независимо	Просвет между трубой на расст от стыка не дол лее 3 мм	оянии 200 мм

^{*} За размерный показатель принимается: номинальная толщина сваренных деталей — для стыковых сварных соединений деталей одинаковой толщины (при предварительной обработке концов деталей путем расточки, раздачи, калибровки или обжатия — номинальная толщина сваренных деталей в зоне обработки); номинальная толщина более тонкой детали — для стыковых сварных соединений деталей различной номинальной толщины (при предварительной обработке конца более тонкой детали — номинальная толщина в зоне обработки); расчетная высота углового шва — для угловых, тавровых и нахлесточных сварных соединений (для угловых и тавровых сварных соединений с полным проплавлением за размерный показатель допускается принимать номинальную толщину более тонкой детали). Расчетная высота углового шва определяется по ГОСТ 2601. При сварке деталей под прямым углом без разделки кромок швом с одинаковыми катетами за расчетную высоту углового шва можно принять 0,8 к, где К — катет шва.

Для газопроводов допускаются подрезы глубиной не более 5% толщины стенки труб, но не более 0,5 мм и длиной не более 1/3 периметра стыка, но не более 150 мм; для технологических трубопроводов — глубина подреза \leq 10% S, но не более 0,5 мм (S — толщина стенки трубы, мм), протяженность — не более 30% длины шва.

18.3.9. Выявленные при визуальном и измерительном контроле дефекты, которые могут быть исправлены (удалены) без последующей заварки выборок, должны быть исправлены до проведения контроля другими методами.

^{**} Подрез размером 0,2 мм и менее измерению не подлежит, определяется визуально.

18.4. Измерение твердости металла шва

- 18.4.1. Измерение твердости металла шва производится с целью проверки качества термообработки сварных соединений или качества подогрева в случае приварки штуцеров (труб) к коллекторам и трубопроводам из хромомолибденованадиевой стали без последующей термообработки (в соответствии с требованиями подраздела 7.7).
 - 18.4.2. Измерению твердости металла шва подвергаются:
- а) все сварные соединения трубопроводов, выполненные хромомолибденовым и хромомолибденованадиевым присадочным материалом и подвергнутые термообработке;
- б) сварные соединения приварки штуцеров (труб) к коллекторам и трубопроводам из хромомолибденовых и хромомолибденованадиевых сталей, выполненные легированным присадочным материалом и подвергнутые термообработке, а также без термообработки (согласно подразделу 7.7) — в объеме не менее 10% (но не менее 2 швов) однотипных сварных соединений, сваренных каждым сварщиком на данном коллекторе или трубопроводе.
- 18.4.3. Твердость металла шва следует измерять переносными твердомерами (см. приложение 26) на зачищенных до металлического блеска участках его поверхности. На каждом сварном шве должно быть подготовлено не менее трех участков в разных местах по периметру стыка и на каждом участке должно быть проведено не менее трех измерений. На стыках труб диаметром менее 60 мм измерение твердости может производиться на одном участке периметра.
- 18.4.4. Результаты измерений твердости металла шва после высокого отпуска оцениваются по нормам, приведенным в табл. 18.3. Твердость металла шва приварки штуцеров (труб) к коллекторам или трубопроводам из стали 12Х1МФ без термообработки не должна превышать значений, приведенных в п. 7.7.2 настоящего РД.

Твердость металла шва определяется как среднее арифметическое результатов измерений твердости на трех участках. Твердость каждого участка в свою очередь определяется

как среднее арифметическое результатов трех измерений, при этом отклонение значения твердости, полученного при любом измерении, от норм, приведенных в табл. 18.3, должно быть не более 7%.

Таблица 18.3

Допустимые значения твердости металла шва после высокого отпуска

Металл шва	Допустимая твердость НВ металла шва при толщине стенки, мм							
	20 и менее более 20 для сты- для стыко- вых соеди- нений более 20 для сты- ковых соединений, для угло вых соединений вых соединений нений							
09X1M	135–240	135–230	135–220					
9X1MФ**	150–250	150–240	150-230					
10Х9НМФ, 10Х9ГСНМФ	260–280***	-	-					

^{*} За толщину стенки угловых соединений принимается толщина стенки приваренных штуцеров (труб, патрубков).

- 18.4.5. Если твердость металла шва оказалась выше норм, приведенных в табл. 18.3, сварное соединение подлежит повторной термообработке, но не более 3 раз (с учетом первой термообработки), после чего проводится контроль твердости шва в соответствии с требованиями настоящего подраздела.
- 18.4.6. Вопрос о возможности допуска в эксплуатацию сварных соединений, подвергавшихся термообработке, с твердостью металла шва, не соответствующей нормам табл. 18.3 (с учетом приложения 29), а также угловых сварных штуцерных соединений из хромомолибденовой или хромомолибдено-

^{**} На сварных соединениях элементов из стали 12X1МФ допускается снижение средней твердости до 140 HB.

^{***} Значения твердости приведены для металла шва, выполненного ручной аргонодуговой сваркой.

ванадиевой стали, выполненных без термообработки (согласно подразделу 7.7) и имеющих твердость шва больше 270 НВ, должен решаться заказчиком и специализированной научно-исследовательской организацией.

18.4.7. Результаты измерения твердости должны быть оформлены протоколом (см. приложение 27, форма П27.18) и занесены в специальный журнал.

18.5. Ультразвуковая и радиографическая дефектоскопия

18.5.1. Для обнаружения возможных внутренних дефектов сварные соединения подлежат ультразвуковой или радиографической дефектоскопии в объемах, указанных в табл. 18.4 и 18.5.

Применение других физических методов контроля, модернизированных или автоматизированных вариантов существующих, а также замену одного метода другим либо их сочетанием разрешается производить по инструкции, согласованной с Госгортехнадзором России.

18.5.2. Отступления от предусмотренного объема ультразвукового или радиографического контроля сварных соединений при монтажных и ремонтных работах могут быть допущены в случае технической невозможности проведения контроля или недопустимости радиографического контроля по условиям охраны труда. В таких случаях допускается либо уменьшить объем ультразвукового или радиографического контроля, либо заменить этот вид контроля послойным визуальным контролем в процессе сварки с фиксацией результатов в специальном журнале и контролем готового сварного соединения магнитопорошковой или капиллярной дефектоскопией или методом травления.

Контроль соединительного стыка трубопровода, подконтрольного органам Госгортехнадзора России, с действующей магистралью (если между ними имеется только одна отключающая задвижка или при контроле не более двух стыков, выполненных при ремонте) может производиться двумя видами контроля — радиографическим и ультразвуковым взамен гидравлического испытания.

Объемы контроля неразрушающими методами сварных соединений трубопроводов, на которые распространяются правила Госгортехнадзора России*1

Изделие, сварное	Параметр	ы среды	Наруж-	Номи-	Метод	Объем	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см²)	темпе- ратура, °С	ный диа- метр, мм	нальная толщина стенки, мм	контроля	контроля, %* ² , не менее	льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
1. Коллекторы: а) стыковые соединения из сталей перлитного и мартенситно-ферритного классов;	Независимо			≥ 15 < 15	УЗД УЗД-Р	100 100	1-1	-
б) стыковые соединения из сталей аустенитного класса и сталей разных структурных классов;	Независимо				Р	100	-	

Изделие, сварное	Параметр	ы среды	Наруж-	Номи-	Метод	Объем	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см²)	темпе- ратура, °С	ный диа- метр, мм	нальная толщина стенки, мм	контроля	контроля, %* ² , не менее	льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
в) угловые со-		Неза	висимо		УЗД-Р	100	-	_
единения со шту-								
церами (трубами)					ł			
внутренним диа-								
метром100 мм и								
более с полным								
проплавлением								
(без конструктив-								
ного непровара)								
из сталей пер-					ł			
питного и мар-								
тенситно-фер-					1			
ритного классов;					1			

	жения стыковых продольных и по- перечных швов (независимо от марки стали)							
	2. Трубопроводы в пределах котла и турбины* ⁴ :							
	а) стыковые	Н	Іезависим	0	≥ 15	УЗД	100	
231	соединения из сталей перлитно-	Незави	исимо	≥ 200	< 15	УЗД-Р	100	
_	го и мартенсит- но-ферритного	≥ 4 (40)	Незави- симо	< 200	< 15	УЗД-Р	20 (100)	
	классов;	≤ 4 (40)	Незави- симо	< 200	< 15	УЗД-Р	10 (100)	
	б) стыковые соединения из стали аустенитного класса и сталей разных структурных классов;		Неза	висимо		Р	100	-

100

100

Независимо

г) места сопря-

Изделие, сварное	Параметр	ы среды	Наруж-	Номи-	Метод	Объем	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см²)	темпе- ратура, °С	ный диа- метр, мм	нальная толщина стенки, мм	контроля	контроля, %* ² , не менее	льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
в) места сопряжения продольных и поперечных стыковых швов из сталей перлитного и мартенситноферритного классов*10		Неза	висимо		Р	100	-	-
3. Трубы поверх- ностей нагрева – стыковые соеди- нения из сталей:								
а) перлитного,	≥ 10 (100)		Независим	10	УЗД-Р	100	_	_
мартенситного и мартенситно-фер- ритного классов;	< 10 (100)		Независим	10	узд-Р	5	5	100

б) аустенитного класса и сталей разных структурных классов		Незав	висимо		P* ⁵	10 (100)	10	100
4. Трубопроводы пара и горячей воды, детали и элементы из перлитных и мартенситно-ферритных сталей:								
а) продольные стыковые соеди- нения;		Незаг	висимо		УЗД-Р	100	~	-
б) поперечные стыковые соеди- нения трубопро- водов:								
I и II категорий	_	-	Незави- симо	≥ 15	УЗД	100	_	-
І категории	_	_	≥200	< 15	УЗД-Р	100	_	-
	-	-	< 200	< 15	УЗД-Р	20 (100)	5	100

Изделие, сварное	Параметр	ы среды	Наруж- ный диа- метр, мм	Номи-	Метод	Объем	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см ²)	темпе- ратура, °С		нальная толщина стенки, мм	контроля	контроля, %* ² , не менее	льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
II категории	_	-	≥200	< 15	УЗД-Р	20 (100)	5	100
	-	-	< 200	< 15	узд-Р	10 (100)	4	100
III категории	-	-	> 465* ⁶	Незави- симо	УЗД-Р	10	4	100
	-	_	≤ 465	Незави- симо	УЗД-Р	5	3	100
IV категории	_	_	> 465* ⁶	Незави- симо	УЗД-Р	6	3	100
	-	-	≤ 465	Незави- симо	УЗД-Р	3	2	100
в) угловые со- единения со шту- церами (трубами) внутренним диа-		Неза	висимо		УЗД-Р	100	-	_

	метром 100 мм и более с полным проплавлением (без конструктивного непровара);								
	г) детали и изделия для трубопроводов — стыковые соединения секторных отводов:	рубопро- гыковые ия сек-							
	продольные III и IV категорий	-	-	Независимо		УЗД-Р	100	-	-
	поперечные III категории	-	1	> 465 ≤ 465	Незави- симо Незави- симо	УЗД-Р УЗД-Р	30 15	8 6	100 100
	поперечные IV категории	1	1	> 465 Незави- симо Незави- симо		УЗД-Р УЗД-Р	18 9	6 4	100 100
1	д) места сопря- жения продоль- ных и поперечных стыковых швов трубопроводов* ¹⁰		Незаг	висимо		Р	100* ⁷	-	-

1	١	١	1
•	Ċ	۸	1
(ľ	7	7

Изделие, сварное	Параметр	ы среды	Наруж-	Номи-	Метод	Объем	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см ²)	темпе- ратура, °С	ный диа- метр, мм	нальная толщина стенки, мм	контроля	контроля, %* ² , не менее	льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
5. Соединения по п. 4 настоящей таблицы из теплоустойчивых сталей, сваренные при температуре окружающего воздуха ниже 0 °C без предварительного подогрева		Неза	висимо		УЗД-Р	100	_	
6. Соединения стыковые и угло- вые с внутрен- ним диаметром привариваемых		Неза	висимо		P	100	_	-

224	штуцеров 100 мм и более из ста- лей аустенитного класса и сталей разных структур- ных классов						
	7. Соединения стыковые литых деталей между собой и с трубами из сталей перлитного и мартенситноферритного классов*8		Независимо	Р-УЗД	100	-	-
	8. Трубопроводы сбросные, расто- почные, дренаж- ные* ⁹ , впрыска* ⁹ , воздушники* ⁹		Независимо	УЗД-Р	100	_	-
	9. Трубопроводы выхлопные	> 2,5 (25) ≤ 2,5 (25)	Независимо Независимо	УЗД-Р УЗД-Р	50 10	5 4	100 30–100

Изделие, сварное	Параметр	ы среды	Наруж- ный диа- метр, мм	Номи-	Метод	Объем контроля, %* ² , не менее	Минима-	Допол-
соединение	рабочее давление, МПа (кгс/см²)	темпе- ратура, °С		нальная толщина стенки, мм	контроля		льное число контро- лируемых стыков	нитель- ный объем контро- ля, %* ³
10. Трубопрово- ды продувочные	> 4 (40)		Независим	10	УЗД-Р	50	5	100
11. Трубопроводы контрольно- измерительных приборов и средств автоматизации		Неза	ВИСИМО		Р-УЗД	3	2	9–100
12. Трубопроводы системы регулирования турбины, мазутопроводы, маслопроводы, кислотной промывки		Неза	висимо		УЗД-Р	100	-	_

- *1 Таблица распространяется на трубы котлов и трубопроводы пара и горячей воды (станционные, в пределах котла и турбины), а также трубопроводы тепловых сетей, транспортирующие пар температурой \leq 440 °C и давлением $P_y \leq$ 6,4 МПа (64 кгс/см²) и горячую воду температурой свыше 115 °C и не более 200 °C и давлением $P_y \leq$ 2,5 МПа (25 кгс/см²), и технологические трубопроводы.
 - *2 Процент общего числа стыков, выполненных каждым сварщиком.
- *3 Должен быть выполнен, если при контроле данной группы сварных соединений (однотипных стыков) были обнаружены недопустимые дефекты. Первая цифра обозначает объем первого дополнительного контроля; если при этом также будут обнаружены недопустимые дефекты, то необходимо проверить 100% однотипных стыков, выполненных данным сварщиком на данном котлоагрегате или трубопроводе за период времени, прошедший после предыдущего контроля сварных соединений изделия этим же методом.
- *4 Контролю подлежат также пароперепускные трубопроводы в пределах паровых турбин и трубопроводы отбора пара от турбины до задвижки.
- *5 Для объектов Минэнерго России разрешается выполнять УЗД в объеме 100% с обязательным дублированием радиографией в объеме 10%.
- *6 Сварные соединения трубопроводов тепловых сетей при диаметре труб более 900 мм контролируются в объеме не менее 15% общего числа однотипных стыков, выполненных каждым сварщиком, но не менее 4 стыков.
- *7 Не засчитывается в объем выборочного контроля поперечных стыковых соединений трубопроводов, указанных в п. 4, б, r настоящей таблицы.
 - *8 Ультразвуковой контроль труб с литыми деталями проводится только со стороны трубы.
- *9 Для сварных соединений на участках от основного трубопровода до первой запорной задвижки с ручным управлением.
 - *10 Для стыковых швов, подвергаемых УЗД.

Примечания.

- 1. УЗД ультразвуковой контроль; Р радиографический контроль; УЗД-Р ультразвуковой или радиографический контроль (первым указан более предпочтительный метод).
- 2. В графе 7 в скобках приведен объем неразрушающего контроля в соответствии с указанием Минэнерго СССР № С-371-14 от 10.11.89, который является обязательным для объектов Минэнерго России.

Изделие, сварное соединение	Рабочее давление, МПа (кгс/см²)	Метод контро- ля	Объем контро- ля, %* ¹ , не менее	Минималь- ное число контроли- руемых стыков	Дополнитель- ный объем контроля, %* ²
1. Трубопроводы тепловых сетей, подпадающие под действие СНиП 3.05.03—85:					
а) паропроводы диаметром, мм					
> 465	≤ 0,07 (0,7)	УЗД-Р	6	3	18–100
≤ 465	≤ 0,07 (0,7)	УЗД-Р	3	2	9–100
б) трубопроводы горячей воды температурой ≤ 115° С и диа- метром, мм					
> 465	≤ 2,5 (25)	УЗД-Р	6	3	18–100
≤ 465	≤ 2,5 (25)	УЗД-Р	3	2	9–100

Ď
#

	в) паровые и водяные тепловые сети на особо ответственных участках* ³	Независимо	УЗД-Р	100	-	-
	2. Газопроводы природного газа (трубопроводы горючего газа), подпадающие под действие СНиП 3.05.02–88*:		_			
241	а) наружные надземные и внут- ренние;	> 0,005 до 1,2 включительно (> 0,05 до 12 включительно)	Р-УЗД*⁴	5	1	10–100
	б) подземные (кроме указанных в п. «в»);	≤ 0,005 (0,05) > 0,005 до 0,3 включительно (> 0,05 до 3 включительно)	Р-УЗД* ⁴ Р-УЗД* ⁴	10 50	1	20–100 100
		> 0,3 до 1,2 включительно (> 3 до 12 включительно)	Р-УЗД*⁴	100	-	~

Изделие, сварное соединение	Рабочее давление, МПа (кгс/см²)	Метод контро- ля	Объем контро- ля, %* ¹ , не менее	Минималь- ное число контроли- руемых стыков	Дополнитель- ный объем контроля, %* ²
в) подземные, прокладываемые в сильно- и среднепучинистых и просадочных грунтах, а также на расстоянии менее 4 м от общественных зданий;	≤ 0,005 (0,05)	Р-УЗД*⁴	25	1	50–100
г) прокладываемые в особых условиях ^{ъ5}	Независимо	Р-УЗД*⁴	100	-	_
3. Трубопроводы наружного водоснабжения и канализации, подпадающие под действие СНиП 3.05.04–85*	≤ 1 (10) > 1 до 2 включительно (> 10 до 20 включительно)	Р-УЗД Р-УЗД	2 5	1 2	4–100 10–100
прокладываемые в особых ус- ловиях* ⁵	> 2 (20) Независимо	Р-УЗД Р-УЗД	10 100	3 -	20–100 –

- *1 Процент общего числа стыков, выполненных каждым сварщиком.
- *2 Должен быть выполнен, если при контроле данной группы сварных соединений (однотипных стыков) были обнаружены недопустимые дефекты. Первая цифра обозначает объем первого дополнительного контроля; если при этом также будут обнаружены недопустимые дефекты, то необходимо проверить 100% однотипных стыков, выполненных данным сварщиком на данном котлоагрегате или трубопроводе за период времени, прошедший после предыдущего контроля сварных соединений изделия этим же методом.
- *3 Особо ответственные участки по СНиП 3.05.03-85 это участки, прокладываемые в непроходных каналах под проезжей частью дорог, в футлярах, тоннелях или технических коридорах совместно с другими инженерными коммуникациями, а также участки на следующих пересечениях: железных дорог и трамвайных путей на расстоянии не менее 4 м, электрифицированных железных дорог не менее 11 м от оси крайнего пути; железных дорог общей сети на расстоянии не менее 3 м от ближайшего земляного полотна; автодорог на расстоянии не менее 2 м от края проезжей части, укрепленной полосы обочины или подошвы насыпи; метрополитена на расстоянии не менее 8 м от сооружений; кабелей силовых, контрольных и связи на расстоянии не менее 2 м; газопроводов на расстоянии не менее 4 м; магистральных газопроводов и нефтепроводов на расстоянии не менее 9 м; зданий и сооружений на расстоянии не менее 5 м от стен и фундаментов.
- *4 Применение ультразвукового метода контроля допускается только при условии проведения выборочной дублирующей проверки стыков радиографическим методом в объеме не менее 10% числа стыков, отобранных для контроля. При получении неудовлетворительных результатов радиографического контроля хотя бы на одном стыке объем этого контроля следует увеличить до 50%. В случае выявления при этом дефектных стыков должны быть подвергнуты радиографическому контролю все стыки, сваренные сварщиком на объекте в течение календарного месяца и проверенные ультразвуковым методом.

5 Особые условия по СНиП 3.05.02–88 – это прокладка подземных газопроводов всех давлений под проезжей частью, а также на переходах через водные преграды и во всех случаях прокладки газопроводов в футлярах (в пределах перехода и на расстоянии не менее 5 м в обе стороны от края пересекаемого сооружения, а для железных дорог – не менее 50 м в обе стороны от края земляного полотна); при пересечении коммуникационных коллекторов, каналов, тоннелей (в пределах пересечений и на расстоянии не менее 5 м в обе стороны от наружных стенок пересекаемых сооружений) и прокладываемые на расстоянии менее 3 м от коммуникационных коллекторов и каналов (в том числе каналов тепловой сети); в районах с сейсмичностью свыше 7 баллов и на подрабатываемых территориях; подземные вводы газопроводов на расстоянии от фундаментов: до 2 м – давлением до 0,005 МПа (0,05 кгс/см²), до 4 м – давлением свыше 0,005 до 0,3 МПа (свыше 0,05 до 3 кгс/см²) включительно, до 6 м – давлением свыше 0,3 до 0,6 МПа (свыше 3 до 6 кгс/см²) включительно, до 10 м – давлением свыше 0,6 до 1,2 МПа (свыше 6 до 12 кгс/см²) включительно; надземные газопроводы, подвешенные к мостам, и в пределах переходов через естественные преграды.

8 Особые условия по СНиП 3.05.04-85 - это прокладка трубопроводов под и над железнодорожными и трамвайными путями, через водные преграды, под автомобильными дорогами, в городских коллекторах при совмещенной прокладке с другими инженерными коммуникациями. Длину контролируемых участков трубопроводов следует принимать не менее: для железнодорожных и трамвайных путей – по 40 м в каждую сторону от крайних путей; для автомобильных дорог – по 25 м в каждую сторону от конца насыпи (выемки); для водных преград – в соответствии с разделом 6 СНиП 2.05.06-85; для других инженерных сооружений – по 4 м в каждую сторону от крайних границ пересекаемого сооружения.

Примечание. УЗД – ультразвуковой контроль; Р – радиографический контроль; УЗД-Р – ультразвуковой или радиографический контроль (первым указан более предпочтительный метод).

Такие отступления оформляются совместным техническим решением дирекции электростанции, организации, выполняющей контроль, и специализированной научно-исследовательской организации.

18.5.3. Радиографический и ультразвуковой контроль кольцевых сварных соединений при 100%-ном контроле проводится по всему периметру стыка. Сварные соединения труб поверхностей нагрева при недоступности контроля по всему периметру могут контролироваться на длине не менее 50% периметра стыка.

Требования к контролю сварных стыковых соединений элементов трубопроводов, расположенных под углом менее 60° к продольной оси трубопровода, должны соответствовать требованиям к продольным соединениям; для других значений угла сварные соединения рассматриваются как поперечные (кольцевые).

Ультразвуковому контролю должны подвергаться только соединения с полным проплавлением (без конструктивного непровара).

При выборочном контроле отбор контролируемых соединений должен проводиться отделом технического контроля предприятия из числа наиболее трудновыполнимых или вызывающих сомнения по результатам визуального и измерительного контроля.

18.5.4. Кроме указанного в табл. 18.4 обязательного ультразвукового контроля с поперечной ориентацией преобразователя относительно продольной оси шва, сварные соединения из хромомолибденованадиевых сталей подвергаются ультразвуковому контролю с продольной ориентацией преобразователя относительно продольной оси шва (для определения поперечных трещин) в объеме 100% в следующих случаях:

если сварные стыковые соединения труб имеют номинальную толщину более 60 мм;

если сварные стыковые соединения литых деталей между собой и с трубами имеют толщину деталей в месте сварки более 35 мм;

если сварные стыковые соединения подвергнуты ремонту с последующей подваркой и имеют номинальную толщину элементов более 35 мм; в случае длины подваренного участка менее 1/4 периметра стыка ультразвуковому контролю должен подвергаться участок, включающий подваренную часть и 30—40 мм основного шва с каждой стороны подварки; при большей длине подварки ультразвуковому контролю на поперечные трещины подвергается весь периметр стыка.

18.5.5. Радиографическую дефектоскопию производят согласно требованиям ГОСТ 7512 и РД 34 10.068–91.

Нормы предельно допустимых несплошностей приведены в табл. 18.6 и 18.7, допустимых выпуклости и вогнутости корня шва — в табл. 18.8 и 18.9. При радиографическом контроле сварных соединений через две стенки нормы оценки качества следует принимать по тому же размерному показателю, что и при контроле через одну стенку.

18.5.6. Зафиксированные на радиографических снимках включения и скопления с максимальным размером менее значений минимально фиксируемого размера включения, указанного в табл. 18.6, или менее требуемой чувствительности, приведенной в табл. 18.7, допускается не учитывать как при подсчете числа одиночных включений и одиночных скоплений и их суммарной приведенной площади или суммарной длины, так и при рассмотрении расстояний между включениями (скоплениями):

Любую совокупность включений, которая может быть вписана в квадрат с размером стороны, не превышающей значения допустимого максимального размера одного включения, можно рассматривать как одно сплошное одиночное включение.

Любую совокупность включений, которая вписывается в прямоугольник с размерами сторон, не превышающими значений допустимого максимального размера и допустимой максимальной ширины одиночного протяженного включения, можно рассматривать как одно сплошное одиночное протяженное включение.

Размерный показатель сварного соединения, мм	Мини- маль- ный фикси- руемый размер вклю- чения, мм	Одиночные включения и скопления допустимый условия допустимо- максимальный размер, мм ке сварного соеди- нения длиной 100 мм				ночные п включ тимые	ротяженные нения допустимое число на любом участке сварного соединения протяженностью 100 мм	Непровар в корне шва стыксв с од- носторонним доступом без под- кладного кольца, мм (не более)		
		вклю- чения	скоп- ления	допус- тимое число	допусти- мая сум- марная приведен- ная пло- щадь, мм ²	макси- маль- ный размер, мм	макси- маль- ная шири- на, мм		высо- той (глуби- ной)*	суммар- ной дли- ной
От 2,0 до 3,0 включительно	0,10	0,6	1,0	12	2,0	5,0	0,6	2	0,3	20% внут-
Свыше 3,0 до 4,0 включи- тельно	0,20	0,8	1,2	12	3,5	5,0	0,8	2	0,4	реннего пери- метра

Размерный показатель	Мини- маль-	0		ые включ Копления		Оди	п өічнгон Роппув	ротяженные ения	Непровар в корне шва стыков с од-	
сварного соединения, мм	ный фикси- руемый размер вклю- чения, мм	допустимый максимальный размер, мм		условия допустимо- сти на любом участ- ке сварного соеди- нения длиной 100 мм				допустимое число на лю- бом участке сварного со- единения про- тяженностью 100 мм	носторонним доступом без под- кладного кольца, мм (не более)	
		вклю- чения	скоп- ления	допус- тимое число	допусти- мая сум- марная приведен- ная пло- щадь, мм ²	макси- маль- ный размер, мм	макси- маль- ная шири- на, мм		высо- той (глуби- ной)*	суммар- ной дпи- ной
Свыше 4,0 до 5,0 включи- тельно	0,20	1,0	1,5	13	5,0	5,0	1,0	2	0,5	20%
Свыше 5,0 до 6,5 включи- тельно	0,20	1,2	2,0	13	6,0	5,0	1,2	3	0,6	внут- реннего пери-
Свыше 6,5 до 8,0 включи- тельно	0,20	1,5	2,5	13	8,0	5,0	1,5	3	0,8	метра

24	
5	

Свыше 8,0 до 10,0 вклю- чительно	0,30	1,5	2,5	14	10,0	5,0	1,5	3	1,0	20% внут- реннего пери- метра
Свыше 10,0 до 12,0 вклю- чительно	0,30	2,0	3,0	14	12,0	6,0	2,0	3	1,2	
Свыше 12,0 до 14,0 вклю- чительно	0,40	2,0	3,0	15	14,0	6,0	2,0	3	1,4	
Свыше 14,0 до 18,0 вклю- чительно	0,40	2,5	3,5	15	16,0	6,0	2,5	3	1,8	
Свыше 18,0 до 22,0 вклю- чительно	0,50	3,0	4,0	16	20,0	7,0	3,0	3	2,0	
Свыше 22,0 до 24,0 вклю- чительно	0,50	3,0	4,5	16	25,0	7,0	3,0	3	2,0	
Свыше 24,0 до 28,0 вклю- чительно	0,60	3,0	4,5	18	25,0	8,0	3,0	3	2,0	

	Свыше 38,0 до 44,0 вклю- чительно	0,75	4,0	6,0	21	41,0	10,0	4,0	3	2,0	
264	Свыше 44,0 до 50,0 вклю- чительно	0,75	4,0	6,0	22	47,0	11,0	4,0	3	2,0	20% внут- реннего пери- метра
	Свыше 50,0 до 60,0 вклю- чительно	1,00	4,0	6,0	23	55,0	12,0	4,0	4	2,0	
	Свыше 60,0 до 70,0 вклю- чительно	1,00	4,0	6,0	24	65,0	13,0	4,0	4	2,0	
	Свыше 70,0 до 85,0 вклю- чительно	1,25	5,0	7,0	25	78,0	14,0	5,0	4	2,0	
	Свыше 85,0 до 100,0 вклю- чительно	1,50	5,0	7,0	26	92,0	14,0	5,0	4	2,0	
	Свыше 100,0	2,00	5,0	8,0	27	115,0	14,0	5,0	4	2,0	

^{*} Высоту (глубину) дефектов определяют по имитаторам или эталонным снимкам.

Изделия	Номиналь- ная толщина стенки, мм	чувст- витель-	Одиночные включения, скопления и цепочки				Макси- маль- ное сварке с одностор число кольца, мм			минно	
		ность снимка, мм*	размер, мм марная					вклю- чений и скол-	местный непровар и вогнутость		мест- ная
			ши- рины вклю- чения	длины вклю- чения	скоп- ления		длина на лю- бом участке шва длиной 100 мм,	лений на лю- бые 100 мм шва	высо- той (глуби- ной)**	суммарной длиной	выпук- лость
Трубопроводы КИПиА***	Свыше 1 до 1,5	0,1	(),4	0,6	_	1,2	4	0,2	20% внутрен-	0,4
	Свыше 1,5 до 2	0,2),5	0,8	_	1,5	4	0,2	него пе- риметра	0,6

	Свыше 2 до 3	0,2	C),6	1,0	-	2,0	4	0,3		0,8
	Свыше 3 до 4	0,2	C),8	1,2	-	2,5	4	0,4	20% внутрен-	1,0
	Свыше 4 до 5	0,3	1	1,0	1,5	-	3,0	4	0,5	него пе- риметра	1,2
	Свыше 5 до 6,5	0,3	1	1,2	2,0	-	4,0	4	0,6		1,5
Газопроводы	До 3	0,2	0,8	3	5	8	8	_	0,4	25 мм на	По
по СНиП 3.05.02–88*	8* Свыше 3 до 5	0,3	1,0	4	6	10	10	-	0,6	300 мм длины	ГОСТ 16037
д« С д«	Свыше 5 до 8	0,4	1,2	5	7	12	12	_	1,0	шва или 10% пе-	
	Свыше 8 до 11	0,5	1,5	6	9	15	15		1,5	риметра при дли- не свар-	
	Свыше 11 до 14	0,6	2,0	8	12	20	20		2,0	ного со- единения	
	Свыше 14 до 20	0,75	2,5	10	15	25	25	-	2,0	менее 300 мм	

Изделия	Номиналь- ная толщина стенки, мм	Тре- буемая чувст- витель- ность	Одиночные включения, скопления и цепочки			Макси- маль- ное число вклю-	Дефекты в корне шва при сварке с односторонним доступом без подкладного кольца, мм				
		снимка, мм*	максимальный сум- размер, мм марна		сум- марная	чений и	чений и скоп- и вогнутость		мест- ная		
		M	ши- рины вклю- чения	длины вклю- чения	скоп- ления	це- поч- ки	длина на лю- бом участке шва длиной 100 мм,	скоп- лений на лю- бые 100 мм шва	высо- той (глуби- ной)**	суммарной длиной	выпук- лость
Трубопроводы	До З	0,2	1,0	5	8	10	10	-	0,3	1/3 внут-	0,6
тепловых се- тей по СНиП 3.05.03–85,	Свыще 3 до 5	0,3	1,2	6	10	12	12		0,5	реннего перимет- ра	1,0
трубопроводы наружного во- доснабжения	Свыше 5 до 8	0,4	1,5	8	12	15	15		0,8		1,5
и канализации по СНиП 3.05.04–85*	Свыше 8 до 11	0,5	2,0	10	15	20	20	-	1,0		2,0

Свыше 11 до 14	0,6	2,5	15	20	25	25	-	1,2	2,0
Свыше 14 до 20	0,75	3,0	20	25	30	30	-	1,5	2,0

^{*} Требуемая чувствительность снимка приведена применительно к канавочным эталонам и радиографированию через две стенки. При радиографировании через одну стенку чувствительность снимка определяют по ГОСТ 7512.

^{**} Высоту (глубину) дефектов определяют по имитаторам или эталонным снимкам.

^{***} Указанные в графе 8 нормы для трубопроводов КИПиА относятся к участку шва длиной 10 мм в месте максимальной концентрации включений и скоплений.

Нормы допустимой выпуклости корня шва, выявляемой радиографическим контролем в сварных соединениях изделий, на которые распространяются правила Госгортехнадзора России, при односторонней сварке без подкладных колец

Номинальный внутренний диаметр сваренных элементов, мм	Допустимая максимальная высота выпуклости корня шва, мм				
До 25 включительно	1,5				
Свыше 25 до 150 включительно	2,0				
Свыше 150	2,5				

Примечание. Для сварных соединений, подвергаемых контролю прогонкой металлического калибра (шара), приведенные в таблице нормы не являются обязательными.

Таблица 18.9

Нормы допустимой вогнутости корня шва, выявляемой радиографическим контролем в сварных соединениях изделий, на которые распространяются правила Госгортехнадзора России, при односторонней сварке без подкладных колец

Номинальная толщина стенки сваренных элементов, мм	Допустимая максимальная высота (глубина) вогнутости корня шва, мм				
От 2,0 до 2,8 включительно	0,6				
Свыше 2,8 до 4,0 включительно	0,8				
Свыше 4,0 до 6,0 включительно	1,0				
Свыше 6,0 до 8,0 включительно	1,2				
Свыше 8,0	1,6				

- 18.5.7. В случае отсутствия одиночных протяженных включений или наличия их в количестве менее допустимого по нормам табл. 18.6 и 18.7 вместо них могут быть допущены в соответствующем количестве одиночные включения и (или) одиночные скопления допустимых размеров без их учета при подсчете суммарной эквивалентной площади или суммарной длины включений и одиночных скоплений.
- 18.5.8. Ультразвуковой контроль сварных стыков трубных систем котлов и трубопроводов и их деталей должен выполняться в соответствии с требованиями ГОСТ 14782 и методическими руководящими документами, согласованными с Госгортехнадзором России, например, РД 34 17.302–97 (ОП 501 ЦД–97).

Нормы допустимых отдельных несплошностей в зависимости от их эквивалентной площади и числа приведены в табл. 18.10 и 18.11.

Примечания.

- 1. При ультразвуковом контроле одиночной считается несплошность, для которой расстояние по поверхности сканирования между двумя соседними несплошностями не менее условной протяженности несплошности, указанной в графе 6 табл. 18.10, или значение эквивалентной площади на противоположных ее краях не превышает значений, указанных в графе 3 табл. 18.11.
- При определении одиночности выявленных несплошностей учитываются расстояния только между фиксируемыми несплошностями.
- 18.5.9. При ультразвуковой дефектоскопии мерой эквивалентной площади несплошностей является амплитуда отраженного от нее эхо-сигнала. Оценку эквивалентной площади осуществляют либо прямым сравнением с помощью эквивалентных отражателей, указанных в графе 3 табл. 18.10 и графе 4 табл. 18.11, либо с помощью специальных АРД-диаграмм. Условная протяженность несплошности не должна превышать условную протяженность эталонного отражателя.
- 18.5.10. Качество сварных соединений труб котлов и трубопроводов пара и горячей воды по результатам радиографи-

ческого и ультразвукового контроля оценивают по двухбалльной системе:

балл 1 – неудовлетворительное качество (в соединении выявлены недопустимые дефекты – см. п. 18.5.11);

балл 2* — удовлетворительное качество, если размеры и число обнаруженных в них несплошностей не превышают норм, приведенных в табл. 18.6 и 18.10, или несплошности не обнаружены при заданном минимально фиксируемом размере включения или при заданном уровне чувствительности.

Таблица 18.10

Нормы допустимых несплошностей, выявляемых ультразвуковым контролем в сварных соединениях изделий, на которые распространяются правила Госгортехнадзора России

Размер- ный пока- затель сварного соедине-	площа, ночны сплоші	лентная ць оди- ых не- чостей, м ²	Максимально допустимое число фиксируемых одиночных не-	Протяженность несплошностей		
ния	мини- мально фикси- руемая	макси- мально допус- тимая	сплошностей на любых 100 мм про- тяженности сварного соединения	суммар- ная в корне шва	одиночных в сечении шва	
Свыше 2 до 3	0,3	0,6	6	20% внут- реннего пери- метра	Не более условий протяжен- ности мак- симально	

^{*} При ультразвуковом контроле согласно РД 34 17.302-97 (ОП 501 ЦД-97) удовлетворительное качество сварного соединения оценивается баллом 2а в случае, если в соединении выявлены только допустимые несплошности числом менее установленных норм; баллом 26 — не обнаружены несплошности, выявляемые при заданном уровне чувствительности используемой методики контроля.

Размер- ный пока- затель сварного соедине-	затель ночных не- сварного сплошностей, соедине-		Максимально допустимое число фикси- руемых оди- ночных не-	-	женность ошностей
ния	мини- мально фикси- руемая	макси- мально допус- тимая	сплошностей на любых 100 мм про- тяженности сварного соединения	суммар- ная в корне шва	одиночных в сечении шва
Свыше 3 до 4	0,45	0,9	6	соеди- нения	допусти- мой экви-
Свыше 4 до 5	0,6	1,2	7		валентной несплош-
Свыше 5 до 6	0,6	1,2	7		НОСТИ
Свыше 6 до 9	0,9	1,8	7		
Свыше 9 до 10	1,2	2,5	7		
Свыше 10 до 12	1,2	2,5	8		
Свыше 12 до 18	1,8	3,5	8		
Свыше 18 до 26	2,5	5,0	8		
Свыше 26 до 40	3,5	7,0	9		
Свыше 40 до 60	5,0	10,0	10		
Свыше 60 до 80	7,0	15,0	11		
Свыше 80 до 120	10,0	20,0	11		

Примечание. Нормы эквивалентной площади приведены для отверстий с плоским дном по ГОСТ 14782. Допускается контроль по другим отражателям, если обеспечена идентичность их эквивалентной площади, подтвержденная процедурами пересчета, предусмотренными ГОСТ 14782, или свидетельством об аттестации используемого отражателя и образца, выданным специализированной научно-исследовательской организацией в области контроля.

18.5.11. Сварные соединения труб котлов и трубопроводов пара и горячей воды оценивают баллом 1, если в них при контроле любым из неразрушающих методов выявлены следующие дефекты:

трещины любых видов и направлений, расположенные в металле шва, по линии сплавления и в околошовной зоне основного металла;

непровары (несплавления), расположенные у поверхности и по сечению сварного соединения (между основным металлом и швом, а также между отдельными валиками и слоями);

незаваренные (или не полностью заваренные) прожоги; свищи;

непровары в корне шва в стыках, сваренных с остающимся подкладным кольцом или расплавляемой вставкой;

несплошности, размеры или число которых превышают нормы, приведенные в табл. 18.6 и 18.10;

выпуклость и вогнутость корня шва, превышающие нормы табл. 18.8 и 18.9.

18.5.12. Качество сварных соединений прочих трубопроводов (тепловых сетей, которые по параметрам рабочей среды не подпадают под действие правил Госгортехнадзора России, газопроводов, трубопроводов водоснабжения и канализации) по результатам ультразвукового и радиографического контроля оценивается по нормам, приведенным в табл. 18.7 и 18.11, которые соответствуют требованиям СНиП 3.05.02—88*, СНиП 3.05.03—85, СНиП 3.05.04—85*.

Изделие	Номинальная толщина, мм	лентных отд	щадь) эквива- цельных не- ностей	Максималь- ное коли- чество от-	Протяженность несплошностей условная, мм		
		минимально фиксируе- мые, дБ	максимально допустимые при эталонировании по зарубке, мм×мм	дельных несплошно- стей на лю- бых 100 мм шва	отдель- ных	суммарная	
Газопроводы по	До 4	На 6 дБ ни-	2,0×0,8	Не норми-	Не нор-	25 на 300 мм	
СНиП 3.05.02–88*	Свыше 4 до 6	же эхо- сигнала от	2,0×0,8	руется	мирует- ся	длины шва или 10% пе-	
	Свыше 6 до 8	максималь-	2,0×1,0			риметра при	
	Свыше 8 до 12	но допусти-	2,0×1,5			длине сварно-	
	Свыше 12 до 15	мой не- сплошности	2,0×2,0			го соединения менее 300 мм	
Į	Свыше 15 до 20		2,5×2,0				
	Свыше 20 до 26		3,0×2,0				
	Свыше 26 до 40		3,0×2,5				

Изделие	Номинальная толщина, мм	лентных отд	щадь) эквива- цельных не- ностей	Максималь- ное коли- чество от-	Протяженность несплош- ностей условная, мм		
		минимально фиксируе- мые, дБ	максимально допустимые при эталони- ровании по зарубке, ммхмм	дельных несплошно- стей на лю- бых 100 мм шва	отдель- ных	суммарная	
Трубопроводы тепловых сетей по СНиП 3.05.03—85, КИПиА, трубопроводы наружного водоснабжения и канализации по СНиП 3.05.04—85*	До 4 Свыше 4 до 8 Свыше 8 до 15 Свыше 15 до 20	На 6 дБ ниже эхо-сигнала от макси-мально до-пустимой несплошности	2,0×0,8 2,0×1,0 2,5×2,0 3,5×2,0	6 7 8 8	В сече- нии шва 5 10 20 20	В корне шва 1/3 внутренне- го периметра шва	

Примечания.

- 1. Для угловых сварных соединений труб с полным проплавлением кромок (без конструктивного непровара) максимально допустимая и наименьшая фиксируемая эквивалентные площади на 3 дБ ниже площадей, установленных в графах 3, 4.
- 2. Допускается эталонирование чувствительности и оценка эквивалентной площади несплошностей по другим отражателям с соблюдением требований примечания к табл. 18.10.
 - 3. При изготовлении угловых отражателей точность выполнения их размеров должна быть не менее ±0,1 мм.

18.5.13. Для сварных соединений или их участков протяженностью менее 100 мм указанные в табл. 18.6, 18.7, 18.10 и 18.11 нормы числа и суммарной приведенной площади протяженности несплошностей должны быть пропорционально уменьшены. Дробные значения допускаемого числа включений и скоплений в этом случае округляют до ближайшего целого.

18.6. Механические испытания и металлографические исследования

18.6.1. Разрушающий контроль путем механических испытаний и метаплографических исследований сварных соединений проводят в целях проверки соответствия прочностных и пластических свойств, характеристик макро- и микроструктуры, формы, размеров и сплошности различных участков сварного соединения требованиям настоящего РД и другой НТД. Механические испытания сварных соединений выполняются по ГОСТ 6996 и включают испытания на растяжение, на изгиб или сплющивание, на ударный изгиб. Метаплографические исследования включают исследования макроструктуры и формы шва, микроструктуры различных зон сварного соединения.

Эти испытания (исследования) проводятся на образцах, изготовленных из специально сваренных контрольных соединений или из производственных сварных соединений в соответствии с требованиями п. 18.6.4 или п. 18.6.7.

18.6.2. Механические испытания и металлографические исследования выполняют: при аттестации технологии сварки объектов, на которые распространяются правила Госгортехнадзора России; при контроле сварочных материалов – в случае и в объеме, регламентированных указаниями раздела 3 настоящего РД; при контроле квалификации сварщиков – во время их аттестации или допуска к работе; при контроле производственных сварных соединений.

Допускается совмещать механические и металлографические испытания при аттестации технологии сварки (кроме первичной), проверке сварочных материалов и испытаниях сварщиков.

- 18.6.3. Контрольные сварные соединения должны быть идентичны контролируемым производственным стыкам по марке стали, размерам труб (при контроле однотипных сварных соединений по одному из типоразмеров), конструкции и виду соединения и выполнены по технологическому процессу, применяемому при изготовлении, монтаже или ремонте котлов и трубопроводов (тем же методом сварки, с использованием соответствующих сварочных материалов, на тех же режимах, с тем же подогревом и т. д.). Сварные соединения (или вырезанные из них образцы) должны быть термообработаны (если термообработке подвергаются производственные стыки) по режиму, регламентированному требованиями раздела 17.
- 18.6.4. Контроль качества производственных сварных соединений изделий, на которые распространяются правила Госгортехнадзора России (кроме технологических трубопроводов), проводится:
- а) путем механических испытаний стыковых сварных соединений, выполненных газовой и контактной сваркой;
- б) путем металлографических исследований стыковых соединений, выполненных газовой и контактной сваркой; соединений деталей из сталей разных структурных классов независимо от способа сварки; угловых и тавровых сварных соединений (в том числе соединений труб или штуцеров с коллекторами и трубопроводами), а также тройниковых соединений независимо от способа сварки.

Не являются обязательными испытания на растяжение и металлографические исследования контрольных сварных соединений, выполненных газовой сваркой, при условии контроля производственных стыков УЗД или радиографированием в объеме 100%.

Для технологических трубопроводов механические испытания стыковых сварных соединений проводятся независимо от способа сварки, а металлографические исследования — по требованию проекта.

18.6.5. Число контрольных сварных соединений, контролируемых в соответствии с п. 18.6.4 (для изделий, подконт-

рольных Госгортехнадзору России), должно быть не менее одного на все однотипные производственные сварные соединения, выполненные каждым сварщиком в течение 6 месяцев (в том числе для разных заказов).

Число контрольных сварных соединений может быть увеличено, если из одного контрольного стыка нельзя изготовить требуемое количество образцов (см. п. 18.6.10 и рис. 18.1).

18.6.6. Механические испытания контрольных стыков труб, подконтрольных органам Госгортехнадзора России, наружным диаметром 108 мм и менее при толщине стенки менее 12 мм можно проводить как на отдельных образцах, вырезанных из контрольного стыка, так и на целых стыках со снятым усилением. В последнем случае испытание на изгиб заменяется испытанием на сплющивание, а минимальное число контрольных стыков должно быть не менее одного для каждого из предусмотренных видов испытаний.

Механические испытания на целых стыках технологических трубопроводов выполняются для труб с условным проходом до 50 мм.

18.6.7. Контроль производственных сварных соединений трубопроводов, на которые не распространяются правила Госгортехнадзора России, производится путем механических испытаний допускных (пробных) стыков и/или контрольных стыков. Для газопроводов, кроме механических испытаний допускных стыков, проводятся механические испытания контрольных стыков:

надземных и внутренних газопроводов всех давлений диаметром менее 50 мм;

надземных и внутренних газопроводов давлением до 0,005 МПа (0,05 кгс/см²) диаметром 50 мм и более;

подземных (наземных) газопроводов всех давлений, сваренных газовой сваркой.

Для трубопроводов тепловых сетей (с параметрами $P \le 0,07$ МПа (0,7 кгс/см²) и $t \le 115$ °C) и трубопроводов наружного водоснабжения и канализации механические испытания выполняются только на допускных стыках. Для сварных соеди-

нений труб паровых котлов с давлением не более 0,07 МПа (0,7 кгс/см²), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 115 °C проводятся механические испытания контрольных стыков.

Допускные стыки свариваются в соответствии с требова ниями п. 5.1.3, а также в случае, если сварщик приступает к сварке новой группы однотипных стыков, которые он на данном объекте не сваривал. Механические испытания проводятся в соответствии с требованиями п. 18.6.8.

18.6.8. Для механических испытаний сварных соединений трубопроводов, на которые не распространяются правила Гостортехнадзора России, отбираются стыки в следующем объеме:

для газопроводов — 0,5% общего числа стыков, сваренных каждым сварщиком в течение календарного месяца при сооружении объекта, но не менее двух — для труб диаметром до 50 мм, одного — для труб диаметром свыше 50 мм;

для труб котлов, водоподогревателей и их элементов, работающих при $P \le 0.07$ МПа (0,7 кгс/см²) и $t \le 115$ °C, — не менее одного на все однотипные производственные сварные соединения, выполненные каждым сварщиком в течение 3 месяцев.

Для механических испытаний сварных соединений технологических трубопроводов выполняется не менее одного стыка на партию однотипных производственных стыков, сваренных в срок не более трех месяцев в количестве не более 100 однотипных* стыков с \mathcal{L}_y до 150 мм и не более 50 стыков с \mathcal{L}_y 175 мм и выше.

В случае, если производственные стыки трубопроводов подвергаются неразрушающему контролю (УЗД или радиографированию) в объеме 100%, механические испытания не производятся.

^{*} Однотипными стыками технологических трубопроводов считаются соединения из сталей одной марки, выполненные одним сварщиком по единому технологическому процессу и отличающиеся по толщине стенки не более чем на 50%. Однотипными по условному диаметру являются: \mathcal{A}_{y} 6–32, \mathcal{A}_{y} 50–150, \mathcal{A}_{y} 175 мм и выше.

Механические испытания сварных соединений трубопроводов выхлопных, продувочных и КИПиА, подвергаемых выборочному контролю неразрушающими методами, проводятся согласно п. 18.6.4 при условии, что имеется аттестация технологии сварки однотипных сварных соединений.

По окончании изготовления контролируемого соединения, включая термическую обработку (если она предусмотрена), сварное соединение должно быть проверено теми же неразрушающими методами контроля (УЗД или радиографией), которые предусмотрены для производственных сварных соединений. При неудовлетворительных результатах контроля контрольные соединения должны быть изготовлены в удвоенном количестве. Если и при повторном неразрушающем контроле будут получены неудовлетворительные результаты, общий результат считается неудовлетворительным. В этом случае должны быть подвергнуты дополнительной проверке качество материала, оборудование и квалификация сварщика.

18.6.9. Из каждого контрольного стыка трубопроводов, на которые не распространяются правила Госгортехнадзора России, вырезаются:

из стыка газопровода (условным диаметром свыше 50 мм) — три образца для испытания на растяжение (с неснятым усилением), три образца для испытания на изгиб (со снятым усилением);

из стыка прочих трубопроводов, указанных в п. 18.6.8, — два образца для испытания на растяжение, два образца для испытания на изгиб.

Из стыка технологического трубопровода, на который распространяются ПБ 03-108—96, изготавливаются два образца для испытания на растяжение, два образца—на изгиб и три образца (при толщине стенки 12 мм и более)— на ударный изгиб.

Стыки газопроводов и технологических трубопроводов условным диаметром до 50 мм включительно испытывают целыми стыками (с неснятым усилением у стыков газопроводов) на растяжение и (со снятым усилением) на сплющивание. Таким

же образом могут испытываться контрольные стыки прочих трубопроводов диаметром 108 мм и менее при толщине стенки менее 12 мм.

18.6.10. Из вертикальных контрольных стыков, сваренных без поворота труб, заготовки образцов вырезают по схеме, приведенной на рис. 18.1. Для горизонтальных стыков можно применять любое расположение заготовок по окружности стыка.

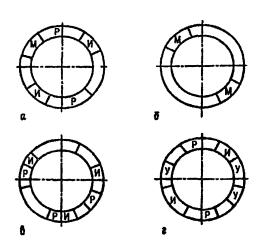


Рис. 18.1. Схемы вырезки образцов из вертикальных неповоротных контрольных стыков: а — стык труб котлов и трубопроводов, подконтрольных Госгортехнадзору России, выполненный газовой и контактной сваркой; б — то же из сталей разных структурных классов независимо от способа сварки; в — стык газопроводов; в — стык технологических трубопроводов (испытание на ударную вязкость в сварных соединениях трубопроводов из углеродистых и аустенитных сталей); Р — заготовки под образцы для испытаний на растяжение; И — заготовки под образцы для испытаний на изгиб; У — заготовки под образцы для металлографических исследований

Требования к изготовлению и испытанию образцов при контроле производственных сварных соединений и аттестации технологии сварки

18.6.11. Заготовку из контрольных стыков для изготовления образцов вырезают механическим способом. Разрешается вырезать заготовки огневой резкой, кроме контрольных стыков из хромомолибденованадиевой стали и стали мартенситного и мартенситно-ферритного классов. В этом случае заготовка должна быть сделана до термообработки (если она предусмотрена) и должен быть оставлен припуск не менее 5 мм на каждую сторону реза для образцов, подвергаемых механическим испытаниям, и 10 мм для образцов, предназначенных для металлографических исследований. Окончательная форма придается образцам путем механической обработки без применения предварительной правки.

18.6.12. Форма и размеры образцов для механических испытаний должны соответствовать ГОСТ 6996.

Размеры плоских образцов, вырезанных из стыков труб для испытания на растяжение, должны составлять (рис. 18.2), мм:

S	До 6	7–10	11–25	26-50	51–75
$b \pm 0.5$	15	20	25	30	35
<i>b</i> 1	25	30	35	40	45
l	50	60	100	160	200

$$L = l + 2h$$
.

Длина захватной части образца h устанавливается в зависимости от конструкции испытательной машины.

18.6.13. Образцы для испытания на растяжение и изгиб, вырезанные из контрольных стыковых соединений труб при толщине стенки до 30 мм включительно, необходимо изготавливать на всю толщину основного металла. Выпуклость (усиление) шва и остатки подкладных колец следует снять заподлицо с основным металлом.

Состругивать выпуклость (усиление) шва у образцов, предназначенных для испытания на растяжение, необходимо попе-

рек шва, при этом основной металл можно снять на всей рабочей части образца на глубину до 1 мм с каждой стороны. При изготовлении плоских образцов (рис. 18.2, а и 18.3, а) состругивание корня шва должно быть минимальным, позволяющим придать образцу необходимую прямоугольную форму. Удаление корня шва при изготовлении образцов из стыков труб малых диаметров не разрешается.

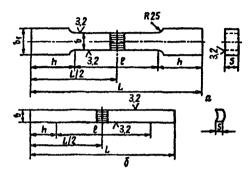
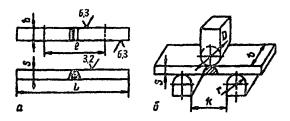



Рис. 18.2. Форма и размеры образцов для испытаний сварных соединений на растяжение: a – для толстостенных труб ($S \ge 12$ мм); 6 – для тонкостенных труб (S < 12 мм)

- 18.6.14. Испытание на изгиб производят по схеме, показанной на рис. 18.3, *б*.
- 18.6.15. При толщине стенки труб более 30 мм, если основной металл имеет временное сопротивление более 500 МПа (50 кгс/мм²) и мощность разрывной машины недостаточна для испытания стандартных образцов на растяжение, допускается состругивать образцы со стороны выпуклости шва до 25 мм (рис. 18.4).
- 18.6.16. Испытание на изгиб контрольных сварных соединений труб при толщине стенки более 30 мм следует производить на образцах, изготовленных во всю толщину стенки трубы, шириной h = 20 мм, при этом испытания образцов проводят

«на ребро». Размеры образцов и схема испытания на изгиб «на ребро» приведены на рис. 18.5.

Рис. 18.3. Испытание на изгиб: b = 1,5S, но не менее 10 мм; l = L/3: D = 2S: r = S. но не более 25 мм: k = 2,5D

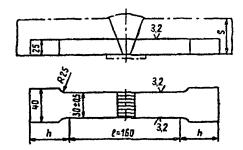


Рис. 18.4. Схема вырезки и размеры образца для испытания на растяжение сварных соединений при размере S > 30 мм (размер h устанавливается в зависимости от конструкции испытательной машины)

Размеры образца и схема испытания на сплющивание даны на рис. 18.6.

- 18.6.17. Для испытания сварного соединения на ударный изгиб образцы изготавливают из средней части шва с надрезом, расположенным по середине образца со стороны раскрытия шва.
- 18.6.18. Все механические испытания необходимо производить при комнатной температуре.

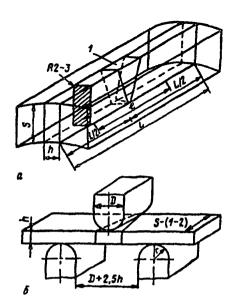


Рис. 18.5. Испытание на изгиб «на ребро» сварных образцов из толстостенных труб (при S > 30 мм): a -схема вырезки и размеры образца; 6 -схема испытаний; D = 2h -диаметр пуансона; L = D + 2,5h + 80 мм -длина образца; h = r; l = L/3; 1 -сварной шов; грани образца на длине l закруглить

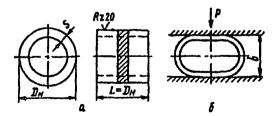


Рис. 18.6. Испытание на сплющивание: a – размеры образца; δ – схема испытания; $D_{\rm H}$ – наружный диаметр трубы; L – длина образца; S – толщина стенки трубы; b – просвет между сжимающими поверхностями в момент появления трещины

18.6.19. Результаты механических испытаний сварных соединений должны удовлетворять следующим требованиям:

- а) временное сопротивление разрыву при испытании однородных сварных соединений на растяжение должно быть не ниже минимально допустимого для основного металла, а при испытании сварных соединений элементов с разными нормативными значениями временного сопротивления не ниже минимально допустимого значения временного сопротивления разрыву менее прочной из сваренных сталей. Для сварных соединений из стали 15ГС, подвергнутых термообработке, временное сопротивление разрыву должно быть не ниже 451 МПа (46 кгс/мм²). Для сварных соединений труб из стали 20, выполненных газовой сваркой, временное сопротивление разрыву должно быть не ниже 373 МПа (38 кгс/мм²);
- б) угол изгиба при испытании сварных образцов на изгиб должен отвечать требованиям табл. 18.12;
- в) просвет «*b*» (рис. 18.6, *б*) между сжимающими поверхностями при испытании на сплющивание должен быть:

для газопроводов независимо от марки стали труб – равным или менее 5S;

для остальных трубопроводов:

$$b \leq \frac{(1+a) \cdot S}{a + S/D_{\mathsf{H}}},$$

где a = 0.08 для углеродистых и легированных сталей;

0,09 - для аустенитных сталей;

для труб размером 32×5 и 32×6 мм из стали $12 \times 1182 \text{МФ}$ просвет «b» должен быть не более 5,6S и 5,0S соответственно;

г) ударная вязкость при испытаниях на ударный изгиб сварных соединений на образцах типа VI по ГОСТ 6996 должна быть не менее 49 Дж/см² (5 кгс • м/см²) для сварных соединений элементов из стали перлитного, мартенситного и мартенситноферритного классов и не менее 69 Дж/см² (7 кгс • м/см²) – для сварных соединений элементов из стали аустенитного класса.

Требования к результатам испытаний сварных соединений на изгиб

Тип (класс) сталей сварных	Номинальная толщина	Угол изгиба пр на изгиб, граду	
соединений	сваренных деталей, S, мм	трубопроводы всех назначе- ний ^{*1} , кроме газопроводов	газопроводы по СНиП 3.05.02–88*
Углеродистые	До 20 вклю-	100 (70)* ²	120 (100)
	чительно Свыше 20	80	120 (100)
Низколегирован-	До 20 вклю-	80 (50)	120 (100)
ные конструкци- онные	чительно Свыше 20	60	120 (100)
Хромомолибде- новые и хромо-	До 20 вклю- чительно	50 (30)	-
молибденована- диевые перлит- ного класса и легированные хромистые и вы- сокохромистые мартенситного и мартенситно- ферритного классов	Свыше 20	40	-
Хромоникелевые	1, ,	150	_
и хромомарган- цевые аустенит- ного класса	чительно Свыше 20	120	

^{*1} Значения угла изгиба при испытании сварных соединений технологических трубопроводов из углеродистой стали при толщине свыше 20 мм и из стали аустенитного класса независимо от толщины сваренных деталей должны быть не менее 100°.

 $^{^{\}star 2}$ В скобках указаны значения угла изгиба для сварных соединений, выполненных газовой сваркой.

18.6.20. Показатели механических свойств определяются как среднее арифметическое результатов, полученных на заданном числе образцов (по каждому виду испытаний для каждого контрольного сварного стыка). Общий результат испытаний считается неудовлетворительным, если результаты испытаний хотя бы одного из образцов ниже норм: по временному сопротивлению разрыву и углу изгиба — более чем на 10%; по ударной вязкости — более чем на 10 Дж/см² (1 кгс • м/см²).

18.6.21. При получении неудовлетворительных результатов по какому-либо виду испытаний допускаются повторные испытания на удвоенном числе образцов, вырезанных из тех же контрольных сварных соединений, взамен каждого образца, показавшего неудовлетворительные результаты. Если при повторном испытании хотя бы на одном из образцов (кроме образцов газопроводов) получены результаты, не отвечающие установленным нормам, то общий результат механических испытаний считается неудовлетворительным.

В случае получения при повторной проверке неудовлетворительных результатов испытаний хотя бы на одном стыке газопровода, все стыки, сваренные данным сварщиком газовой сваркой в течение календарного месяца на данном объекте, должны быть удалены, а стыки, сваренные дуговой сваркой, должны быть проверены радиографией.

18.6.22. Изломы образцов, которые получены при механических испытаниях, следует просматривать и обнаруженные крупные дефекты заносить в протоколы механических испытаний. При выявлении хотя бы на одном образце трещин или других дефектов, выходящих за пределы норм, установленных настоящим РД, даже при удовлетворительных результатах механических испытаний и приемлемых результатах металлографического исследования, образцы необходимо забраковывать.

18.6.23. Образцы (шлифы) для металлографического исследования сварных соединений нужно вырезать поперек шва. Образцы для макроисследования всех сварных соединений и

для микроисследования сварных соединений элементов при толщине стенки менее 25 мм должны включать все сечение шва, обе зоны термического влияния, прилегающие к ним участки основного металла, а также подкладное кольцо, если оно применялось и не подлежит удалению на производственных стыках. Образцы для микроисследования сварных соединений элементов с толщиной стенки 25 мм и более могут включать лишь часть сечения соединения. При этом расстояние от линии сплавления до краев образца должно быть не менее 12 мм, а площадь контролируемого сечения — не менее 25×25 мм. При изготовлении образцов для металлографического исследования угловых и тавровых сварных соединений, выполненных на трубных элементах, контролируемые сечения необходимо разрезать вдоль оси штуцера (привариваемой трубы).

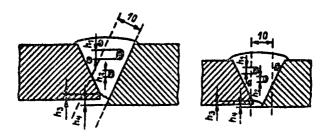

- 18.6.24. Сварные соединения бракуют, если при металлографическом исследовании макроструктуры хотя бы на одном поперечном шлифе, вырезанном из контрольного сварного соединения, выявлены следующие дефекты:
- а) трещины любых размеров и всех видов и направлений, расположенные в металле шва, по линии сплавления и в околошовной зоне основного металла. В стыках труб из стали аустенитного класса допускаются отдельные надрывы протяженностью не более 0,3 мм в пределах одного слоя шва, вызванные усадкой металла при обрыве дуги (один надрыв в данном сечении шва):
- б) непровары (несплавления), расположенные у поверхности и по сечению сварного соединения (между основным металлом и металлом шва, а также между отдельными валиками и слоями шва);
- в) поры, расположенные в виде сплошной сетки, незаваренные (или не полностью заваренные) прожоги, свищи, смещения внутренних кромок состыкованных труб (деталей), превышающие нормы;
- г) местные непровары, вогнутость или выпуклость корня шва (рис. 18.7), превышающие нормы (см. табл. 18.6–18.9);

Рис. 18.7. Дефекты корня шва:

a — выпуклость корня шва на участке стыка, сваренного в нижнем положении; δ — вогнутость корня шва на участке стыка, сваренного в потолочном положении; ϵ — непровар в корне шва

д) поры, шлаковые и вольфрамовые включения, превышающие нормы, приведенные в табл. 18.13. Показатель концентрации дефектов $K_{\rm g}$ определяется как сумма наибольших линейных размеров (по высоте шва) всех допустимых дефектов (объемных включений, непровара, смещения кромок и др.), выявленных на любой полосе шириной 10 мм, проходящей по высоте шва или параллельно линии сплавления. Схема подсчета приведена на рис. 18.8.

Рис. 18.8. Схема подсчета показателя концентрации дефектов (K_A) : $K_A = h_1 + h_2 + h_3 + h_4$

18.6.25. В околошовной зоне сварных соединений элементов из стали аустенитного класса, выполненных ручной дуговой сваркой, не допускается действительное зерно крупнее номера 1 по шкале ГОСТ 5639 для основного металла.

18.6.26. При микроисследовании сварных соединений, выполненных газовой сваркой на элементах из стали перлитного класса, не допускаются в металле шва и околошовной

зоне зерна номер 1 и крупнее по шкале ГОСТ 5639, участки с мартенситной структурой.

Таблица 18.13

Допустимые размеры включений,				
выявляемых при	металлограс	рическом	исследовании	

Номинальная тол- щина стенки труб (деталей) в стыко- вых соединениях или меньший катет шва в угловых, мм	Допустимый наибольший размер одиночных включений и скоплений, мм	Максимально допустимое число вклю- чений (скоп- лений) в шлифе	Максималь- но допус- тимый по- казатель К _д , мм
До 5	0,5	4	1,3
Свыше 5 до 6,5	0,6	4	1,4
Свыше 6,5 до 8,5	0,8	4	1,7
Свыше 8,5 до 12	1,0	4	2,0
Свыше 12 до 20	1,3	5	2,5
Свыше 20 до 35	2,0	6	3,5
Свыше 35 до 50	2,5	7	5,0
Свыше 50	3,0	8	8,0

Примечания.

- 1. Включения (скопления) с максимальным размером до 0,2 мм включительно не учитываются.
- 2. Расстояние между любыми двумя включениями и скоплениями должно составлять не менее трехкратного наибольшего размера любого из двух рассматриваемых включений или скоплений.
- 18.6.27. При микроисследовании сварных соединений труб из аустенитных сталей структура металла шва должна быть аустенитной с незначительным количеством карбидов, равномерно расположенных по полю и границам зерен, и феррита в случае применения аустенитно-ферритных электродов. Зона термического влияния должна иметь аустенитную структуру с небольшим количеством карбидов, равномерно распределенных по сечению зоны.

- 18.6.28. При микроисследовании сварных соединений труб из сталей мартенситно-ферритного класса, выполненных ручной дуговой сваркой аустенитным присадочным материалом, типичными структурами являются: для наплавленного металла—аустенит с ферритными прослойками по границам зерен и единичными выделениями карбидов, для высокотемпературной зоны термического влияния—ферритно-аустенитная. Допускается наличие ферритной полосы вдоль линии сплавления со стороны основного металла.
- 18.6.29. Если при металлографическом исследовании контрольных сварных стыков в соответствии с п. 18.6.4, б, проверенных ультразвуком или радиографией, обнаружены недопустимые внутренние дефекты, которые по нормам этих методов контроля должны и могли быть выявлены примененным методом неразрушающего контроля, то все производственные сварные соединения, контролируемые дефектным стыком, подпежат 100%-ной проверке тем же методом дефектоскопии независимо от предусмотренного и выполненного объема неразрушающего контроля. Эту проверку должен осуществлять наиболее опытный и квалифицированный дефектоскопист. Дефектоскописту, проверявшему контрольный стык и пропустившему в нем дефект, выполнять указанный контроль производственных стыков не разрешается.

18.7. Прогонка металлического шара

- 18.7.1. Контроль прогонкой металлического шара производится с целью проверки обеспечения заданного проходного сечения в сварных соединениях труб поверхностей нагрева котлов.
- 18.7.2. Контроль прогонкой металлического шара проводится в случаях, оговоренных конструкторской документацией.
- 18.7.3. Диаметр шара $\mathcal{L}_{\underline{u}}$ должен быть равен 0,8 \mathcal{L} , где \mathcal{L} наименьший внутренний диаметр трубы с учетом допуска на

наружный диаметр и толщину стенки – подсчитывается по формуле:

$$\mathcal{I} = \mathcal{I}_a - \Delta \mathcal{I}_a - 2(S + \Delta S),$$

где \mathcal{L}_a – номинальный наружный диаметр трубы;

 $\Delta \mathcal{I}_{a}$ – минусовый допуск на наружный диаметр трубы;

S- номинальная толщина стенки трубы;

 ΔS – плюсовой допуск на толщину стенки трубы.

18.7.4. Контроль прогонкой металлического шара должен проводиться по технологии, изложенной в производственной инструкции, разработанной для монтажа котла конкретного типа.

18.8. Капиллярный и магнитопорошковый контроль

- 18.8.1. Капиллярный или магнитопорошковый контроль сварных соединений проводится с целью определения поверхностных дефектов при ремонте сварных соединений в соответствии с разделом 19 либо для уточнения результатов визуального и других методов контроля.
- 18.8.2. Капиллярный контроль должен проводиться в соответствии с ГОСТ 18442, магнитопорошковый с ГОСТ 21105 и унифицированными методиками контроля ПНАЭ Γ -7-018–89 и ПНАЭ Γ -7-015–89.

При капиллярном контроле класс чувствительности должен быть не ниже III, при магнитопорошковом – не ниже уровня Б.

- 18.8.3. При капиллярном контроле сварных соединений по индикаторным следам наличие удлиненных и неодиночных индикаторных следов является браковочным признаком. Число одиночных округлых индикаторных следов не должно превышать норм, установленных табл. 18.2 для одиночных включений, а наибольший размер каждого индикаторного следа не должен превышать трехкратных значений этих норм.
- 18.8.4. Нормы оценки качества при магнитопорошковом контроле должны соответствовать нормам для визуального контроля (п. 18.3.4 и табл. 18.2).

18.8.5. Выявленные при контроле в соответствии с пп. 18.8.3 и 18.8.4 дефекты допускается оценивать по фактическим показателям размеров после удаления реактива или эмульсии (порошка). При этом следует руководствоваться требованиями п. 18.3.4 и табл. 18.2. Результаты этой оценки должны считаться окончательными.

18.9. Гидравлические испытания

18.9.1. Все сварные соединения котлов и трубопроводов пара и горячей воды, на которые распространяются правила Госгортехнадзора России, проверяют на прочность и плотность гидравлическим испытанием. Пробное давление, технология проведения и оценка результатов гидравлического испытания устанавливаются соответствующими правилами Госгортехнадзора России.

Сварные соединения газопроводов проверяют гидравлическим (или пневматическим) испытанием в соответствии с требованиями СНиП 3.05.02—88*.

Сварные соединения технологических трубопроводов, на которые распространяются ПБ 03-108—96, проверяют гидравлическим или пневматическим испытанием в соответствии с требованиями этих Правил.

Сварные соединения прочих трубопроводов проверяют гидравлическим испытанием, если это указано в чертеже, технических условиях или инструкции на изготовление изделия. При отсутствии в этих документах указаний о величине пробного давления она должна быть равна 1,25 рабочего (избыточного), но не менее 0,2 МПа (2 кгс/см²).

18.9.2. Результаты гидравлического испытания считаются удовлетворительными, если манометр не показывает падение давления, а в сварных швах не обнаружено течи, «слезок» и «потения» и изделие не получило видимых остаточных деформаций.

19. ИСПРАВЛЕНИЕ ДЕФЕКТОВ В СВАРНЫХ СОЕДИНЕНИЯХ ТРУБОПРОВОДОВ И ТРУБ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ

19.1. Настоящий раздел распространяется на исправление с помощью ручной дуговой или ручной аргонодуговой сварки дефектов в сварных соединениях, выполненных в условиях монтажа и ремонта, в которых дефекты исправляются до эксплуатации сварных соединений.

Требования настоящего раздела распространяются на сварные соединения труб из сталей всех марок, приведенных в приложении 2, кроме сварных соединений из сталей аустенитного класса. Исправление дефектов в этих сварных соединениях должно выполняться по технологии, разработанной для каждого конкретного случая и согласованной со специализированной организацией, указанной в правилах Госгортехнадзора России.

Исправление дефектов в сварных соединениях (заводских, монтажных, ремонтных), бывших в эксплуатации, должны производиться:

трубопроводов, коллекторов (камер) и привариваемых к ним штуцеров (труб) \mathcal{A}_{y} 100 с температурой пара свыше 450 °C — в соответствии с руководящим документом РД 34 17.310—96;

штуцерных соединений, не подпадающих под действие РД 34 17.310–96, – в соответствии с подразделом 7.7 настоящего РД:

барабанов котлов давлением до 4 МПа (40 кгс/см²) включительно – в соответствии с разделом 20 настоящего РД.

Во всех остальных случаях исправление дефектов в сварных соединениях, бывших в эксплуатации, должно производиться по технологии, согласованной:

для объектов Минэнерго России – со Всероссийским теплотехническим институтом (ВТИ);

для других объектов – с любой специализированной научно-исследовательской организацией в области сварки, приведенной в приложениях к правилам Госгортехнадзора России.

В заводских сварных соединениях, не бывших в эксплуатации, дефекты исправляются по технологии завода – поставщика оборудования либо по ПТД, разработанной в соответствии с требованиями правил Госгортехнадзора России, РД 2730.940.102–92 и РД 2730.940.103–92 и согласованной со специализированной организацией, указанной в правилах Госгортехнадзора России.

19.2. Исправление с помощью сварки дефектов в литых деталях, не бывших в эксплуатации, производится в соответствии с требованиями РД 108.021.112—88 либо по технологии, согласованной с заводом-изготовителем. Технология исправления с помощью сварки дефектов в новых сварно-кованых и сварно-штампованных деталях должна быть согласована с заводом-изготовителем либо с НПО ЦНИИТМаш или ЦКБА.

Исправление дефектов с помощью сварки в таких деталях, бывших в эксплуатации на объектах Минэнерго России, должно производиться по технологии, разработанной или согласованной ВТИ, на объектах других ведомств — по технологии, разработанной или согласованной ВТИ или одной из специализированных научно-исследовательских организаций по технологии сварки, приведенных в приложениях к правилам Госгортехнадзора России.

- 19.3. Поверхностные и подповерхностные дефекты в стыках трубопроводов (независимо от их назначения и параметров рабочей среды) и труб поверхностей нагрева котлов (в том числе в корневых слоях, выполненных аргонодуговой сваркой) должны исправляться следующим образом:
- а) чрезмерные выпуклости (усиления) сварных швов удалить механическим способом, недостаточные выпуклости исправить подваркой предварительно зачищенного шва;
- б) наплывы удалить механическим способом и при необходимости подварить;
- в) подрезы и углубления между валиками подварить, предварительно зачистив места подварки;
- r) сквозной прожог или непровар в корневом слое, выполненном аргонодуговой сваркой (до заполнения остальной час-

ти разделки), исправить ручной аргонодуговой сваркой с применением присадочной проволоки соответствующей марки.

Исправление поверхностных и подповерхностных дефектов без последующей заварки мест их выборки допускается на сварных соединениях в случае, если остающаяся толщина металла в месте максимальной глубины выборки не менее расчетной толщины стенки, но не менее 75% ее номинальной толшины.

- 19.4. Сварные соединения трубопроводов пара и горячей воды и труб поверхностей нагрева котлов, а также газопроводов, подпадающих под действие СНиП 3.05.02—88*, могут ремонтироваться путем подварки выборки поврежденного металла независимо от размеров выборки.
- 19.5. Сварные соединения трубопроводов тепловых сетей, подпадающих под действие СНиП 3.05.03–85, и технологических трубопроводов, сооружаемых в соответствии с ПБ 03-108–96, могут ремонтироваться путем подварки выборки поврежденного металла при условии, что размеры отвечают нормам, приведенным в этих нормативных документах.
- 19.6. Поврежденный металл сварного соединения* следует удалять механическим способом (абразивным инструментом, резанием или вырубкой).

Допускается удаление дефектного металла воздушно-дуговой, воздушно-плазменной или кислородной строжкой (резкой) с последующей обработкой поверхности выборки механическим способом с удалением слоя металла на сварных соединениях из углеродистых и кремнемарганцовистых сталей до полной ликвидации следов строжки (резки); на сварных соединениях из других легированных сталей – с удалением слоя толщиной не менее 1 мм. Стыки труб из хромомолибденовых и хромомолибденованадиевых сталей при толщине стенки бо-

^{*} Под поврежденным металлом сварного соединения следует понимать металл шва и прилегающую к шву зону с дефектами в виде трещин, скоплений пор, несплавлений и других несплошностей, превышающих допустимые нормы.

лее 10 мм перед огневой строжкой (резкой) следует подогревать до $200-300\,^{\circ}\text{C}$.

Кромки выборки следует плавно вывести на поверхность трубы или шва; в поперечном сечении выборка должна иметь чашеобразную форму разделки. Исправляемый участок после выборки с целью проверки полноты удаления дефекта контролируется визуально, а при исправлении трещины — также капиллярной или магнитопорошковой дефектоскопией либо путем травления соответствующим реактивом.

Форма и размеры выборки и последующей ее заварки в зависимости от места расположения дефекта и типа стали приведены на рис. 19.1.

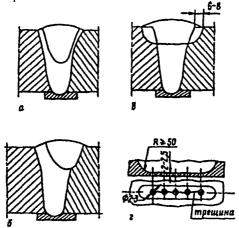


Рис. 19.1. Формы выборки и подварочного шва при исправлении дефектов в сварных соединениях: а, б — из углеродистых и низколегированных сталей для температур эксплуатации до 510 °C и хромомолибденовых сталей для температур эксплуатации до 545 °C. Исправление дефектов в металле шва (а) и в ЗТВ соединения (б);

 в – из хромомолибденованадиевых сталей для температур эксплуатации до 560–570 °С. Исправление дефектов в металле шва и в 3ТВ соединения; г – подготовка к заварке участка со сквозной трещиной При обработке выборки согласно рис. 19.1, в (в хромомолибденованадиевых сталях) необходимо обязательно удалить зону термического влияния металла труб, образовавшуюся при сварке основного шва.

Если исправляют стык с трещиной, то ее концы должны быть точно определены путем травления или капиллярным методом и засверлены сверлом диаметром на 2–3 мм больше ширины трещины, после чего дефектный металл удаляют полностью. При сквозной трещине для удобства последующего заплавления целесообразно оставлять слой металла толщиной 2–2,5 мм в качестве подкладки нового шва (эту толщину проверяют несколькими сквозными сверлениями) (рис. 19.1, г). Подварку в этом случае нужно начинать с переплавления оставшейся части стенки с трещиной, причем сварщик должен следить за полным (сквозным) расплавлением стенки: если перед электродом перемещается маленькое сквозное отверстие, то это означает, что сварка идет с полным проваром.

19.7. Подварку выборки и наплавку для исправления шва желательно выполнять тем же способом сварки (ручным дуговым или ручным аргонодуговым) и с использованием тех же присадочных материалов, какие применялись для сварки основного шва. Если сварное соединение выполнялось автоматическим или механизированным способом сварки, то подварка и наплавка шва выполняются ручным дуговым или ручным аргонодуговым способом с применением присадочного материала согласно требованиям табл. 4.1, 4.4 или 15.1.

Перед подваркой или наплавкой стык, независимо от толщины стенки трубы и марки стали, необходимо подогреть по всему периметру до температуры предварительного подогрева, регламентированной при сварке труб из стали этой марки.

Один и тот же участок может быть исправлен не более 3 раз (под участком в данном случае понимается прямоугольник наименьшей площади, в контур которого вписывается подлежащая заварке или уже заваренная выборка, и примыкающая к нему поверхность на расстоянии, равном трехкратной ширине этого прямоугольника).

- 19.8. После заварки выборки стык подвергается термообработке по всему периметру в случае, если глубина выборки (толщина подварки) равна или больше толщины элемента сварного соединения, для которого согласно табл. 17.1 требуется термообработка. При выполнении подварки стыков труб из хромомолибденованадиевой стали аналогичным присадочным материалом (металл шва 09Х1МФ) термообработка должна проводиться независимо от размеров (глубины) подварки. Режимы термообработки должны соответствовать табл. 17.1 для данной марки стали, однако длительность выдержки может быть сокращена на один-два часа, но должна быть не менее одного часа.
- 19.9. Исправленные с помощью сварки стыки нужно подвергнуть 100%-ному визуальному контролю, ультразвуковой дефектоскопии или радиографии, а также магнитопорошковому или капиллярному контролю.

Контролируемая зона должна включать место заварки и прилегающие к нему участки шириной не менее 20 мм сварного шва и 10 мм основного металла.

- 19.10. В продольных швах газоплотных панелей паровых котлов дефекты в виде трещин, распространяющихся в пределах плавников (не захватывая тело трубы), исправляют путем подварки. Для этого дефектное место вышлифовывают, обеспечивая плавные очертания выборок, проверяют капиллярным методом или травлением очертания дефекта, рассверливают концы трещины и заваривают электродами диаметром 2,5—3 мм. Если после вышлифовки трещины в плавнике образовалась сквозная щель шириной более 4 мм, то на это место ставят пластину из стали, аналогичной по химическому составу стали свариваемых плавниковых труб, и приваривают ее к трубам в соответствии с указаниями, приведенными в разделе 16.
- 19.11. Если трещины проходят и в теле плавниковых труб, дефектное место необходимо удалить вместе с участком трубы, как это показано на рис. 19.2. Огневым способом разрезают плавники на участке с обнаруженными дефектами, а

затем вырезают трубу (рис. 19.2, а). С обеих сторон выреза удаляют плавники на длине 60 мм. Плавники и торцы труб под сварку обрабатывают механическим способом. К сварке подготавливают отрезок плавниковой трубы (рис. 19.2, б), вводят его в вырез с зазором 0,5–1,5 мм и сваривают сначала один стык, затем другой – аргонодуговым либо комбинированным способом.

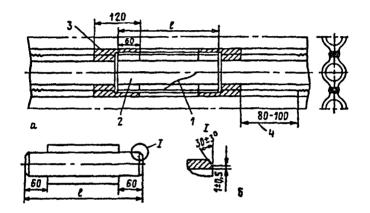


Рис. 19.2. Схема вырезки участка трубы с трещиной и размеры ремонтной вставки: 1 — трещина; 2 — вырезаемый участок трубы; 3 — вырезаемые участки плавников; 4 — разрезы по продольным швам с обеих сторон вырезаемого участка труб

После сварки кольцевых соединений сначала выполняют продольные швы по плавникам, а затем уплотняют «окна» по технологии, изложенной в разделе 16.

- 19.12. Исправленные в соответствии с пп. 19.10 и 19.11 дефекты в сварных соединениях газоплотных панелей контролируются согласно разделу 16 (пп. 16.2.6, 16.3.16, 16.4.7).
- 19.13. При ремонте сварных соединений оформляют ту же техническую документацию, что и в процессе монтажа трубо-

проводов и труб поверхностей нагрева котла. Кроме того, составляют акт на переварку дефектных стыков или делается запись в журнале сварочных работ либо в специальном журнале учета ремонта сварных соединений.

20. РЕМОНТ С ПОМОЩЬЮ СВАРКИ БАРАБАНОВ КОТЛОВ ДАВЛЕНИЕМ ДО 4 МПа (40 кгс/см²) ВКЛЮЧИТЕЛЬНО*

20.1. Общие положения

20.1.1. Настоящий раздел распространяется на ремонт с помощью сварки и наплавки барабанов котлов низкого и среднего давления (до 4 МПа включительно), изготовленных из стали марок Ст3, Ст4, Ст2Г, 20, 15К, 16К, 18К, 20К, 22К, 15ГС, 16ГС, 17ГС, 17Г1С.

20.1.2. В настоящем разделе рассматривается ремонт путем наплавки коррозионных раковин, заварки трещин, вварки заплат, устранения неплотностей вальцовочных соединений и глушения трубных отверстий как в новых барабанах, так и в барабанах, бывших в эксплуатации.

Вварка штуцерных соединений в барабаны должна производиться в соответствии с требованиями подраздела 7.7, а ремонт сварных соединений – раздела 19.

20.1.3. Ремонт барабанов котлов должен выполняться по технологии, разработанной для каждого конкретного случая в соответствии с требованиями настоящего РД и согласованной с заводом — изготовителем котла (барабана) или специализированной научно-исследовательской организацией в области

10 Сварка... 289

^{*} Ремонт барабанов котлов высокого давления (более 4 МПа) должен производиться в соответствии с «Основными положениями по обследованию и технологии ремонта барабанов котлов высокого давления из сталей 16ГНМ, 16ГНМА и 22К» либо по технологии, согласованной с заводом — изготовителем барабана или с одной из специализированных организаций в области сварки, приведенными в приложениях к правилам Госгортехнадзора России.

сварки, приведенной в приложении к Правилам устройства и безопасной эксплуатации паровых и водогрейных котлов Госгортехнадзора России.

- 20.1.4. Выполнение всех сварочных и наплавочных операций, изложенных в настоящем разделе, должно производиться с использованием электродов типа Э50А (УОНИ-13/55, ТМУ-21У, ЦУ-5 и др.) диаметром 2,5—4 мм.
- 20.1.5. Контроль качества наплавки коррозионных раковин, сварных соединений заварки трещин и вварки заплат производится путем визуального контроля и ультразвуковой или радиографической дефектоскопии в объеме 100% (по всей поверхности наплавки и на всей длине сварного шва). Контроль угловых соединений вварки заглушек в трубные отверстия и подварки вальцовочных соединений производится визуально по всей длине шва; в случае обнаружения при визуальном контроле дефектов в виде трещин или сомнительных мест в сварном соединении должен быть произведен контроль магнитопорошковой или капиллярной дефектоскопией.

Результаты визуального контроля должны отвечать требованиям пп. 18.3.4 и 18.3.5, ультразвукового — табл. 18.10, радиографического — табл. 18.6.

20.1.6. Обнаруженные при контроле недопустимые дефекты в сварных соединениях должны быть исправлены в соответствии с указаниями раздела 19.

20.2. Наплавка коррозионных раковин

20.2.1. Коррозионные раковины допускается исправлять путем наплавки в случае, если глубина раковины не превышает 50% толщины стенки барабана. При большей глубине разъедания на поверхности более 250 см² исправление такого участка производится путем его вырезки и вварки заплаты. Участки с глубиной выборки (после удаления дефектного металла) менее 10% толщины стенки барабана могут быть оставлены без наплавки, если толщина стенки в месте наибольшей глубины выборки не будет меньше расчетной.

20.2.2. Дефектный участок должен быть тщательно зачищен и определены его границы. Удаление дефектного металла следует производить абразивным инструментом, не допуская острых углов и резких переходов.

После удаления дефектного металла поверхность выборки подвергается травлению 10%-ным раствором азотной кислоты в спирте и тщательному визуальному контролю; если будут обнаружены трещины, то они должны быть выбраны абразивным кругом или исправлены в соответствии с требованиями подраздела 19.6.

20.2.3. Наплавка выполняется многослойной. Первый слой валиков накладывается перпендикулярно образующей барабана, каждый последующий – перпендикулярно предыдущему. Каждый валик должен перекрывать соседний на 1/3—1/2 его ширины.

В случае, если поверхность раковины после удаления дефектного металла превышает 200–250 см², ее заварка производится следующим образом. Первый слой (или два первых слоя) накладывается перпендикулярно образующей барабана. Затем вся площадь выборки разбивается на квадратные участки со стороной 50–100 мм, которые наплавляются в последовательности, указанной цифрами на рис. 20.1, с таким расчетом, чтобы валики располагались под углом 90° к валикам соседних участков.

Рис. 20.1. Заплавка раковины

20.2.4. После окончания наплавки вся ее поверхность обрабатывается абразивным кругом заподлицо с основным металлом и производится контроль качества наплавленного участка согласно п. 20.1.5.

20.3. Заварка трещин

20.3.1. Поверхность барабана в районе обнаруженной трещины должна быть тщательно зачищена до металлического блеска, определены границы распространения трещины, произведена разделка места будущей заварки, в том числе засверловка концов трещины, и контроль полноты удаления дефектного металла в соответствии с требованиями подраздела 19.6.

При глубине трещины размером более 1/3 толщины стенки барабана разделку трещины производят насквозь и ремонтируют как сквозную трещину.

20.3.2. Если после удаления дефектного металла образовалась сквозная разделка шириной в корне в пределах 6—12 мм, то заварка выборки должна производиться на подкладной планке. После заварки планка удаляется, корень шва зачищается и при необходимости подваривается.

Если ширина разделки в корне составляет 12–40 мм, то подкладную планку можно не удалять, обварив ее по периметру ниточным швом, а в концах разделки установить штуцерные заглушки, обработав предварительно концы разделки резцом или абразивным кругом под наружный диаметр заглушки (рис. 20.2).

Штуцерные заглушки изготавливаются из трубы по одному из вариантов, представленных на рис. 20.2 (сечение *Б–Б*). Колпачковая заглушка изготавливается путем обжатия в горячем состоянии конца трубы и его заварки. Трубы для заглушек должны быть изготовлены из углеродистой или низколегированной конструкционной стали.

Штуцерные заглушки целесообразно устанавливать в качестве разгрузочных элементов посреди протяженных трещин (длиной более 300—400 мм) в случае, если трещина располагается в местах барабана с низкой деформационной способно-

стью (вблизи приваренных ребер жесткости, перегородок, днищ барабанов).

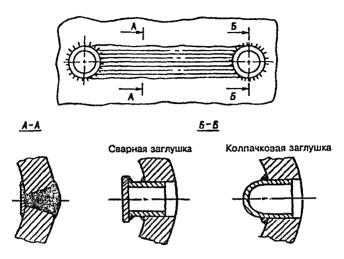


Рис. 20.2. Заварка трещины в барабане котла с установкой штуцерных заглушек в концах трещины

При значительной ширине разделки в корне шва (более 30–40 мм) следует устанавливать заплату шириной не менее 100 мм в соответствии с требованиями подраздела 20.4.

- 20.3.3. Заварка трещины при ее длине более 150 мм производится обратноступенчатым способом с минимальным разогревом металла.
- 20.3.4. Наплавленный металл должен на 1,5—2 мм превышать поверхность листа барабана. Поверхность шва должна быть обработана абразивным кругом до гладкой поверхности заподлицо с основным металлом или с плавным переходом к нему.
- 20.3.5. В случае расположения нескольких трещин в одном месте, ограниченном окружностью не более 100 мм (рис. 20.3), целесообразно исправить такой дефект путем вварки заглуш-

ки. Для этого сначала устанавливаются методом травления границы распространения трещин, затем дефектное место удаляется путем высверливания или газовой резки с последующей обработкой отверстия абразивным кругом либо резцом (фрезой), устанавливается заглушка и обваривается согласно требованиям подраздела 20.5.

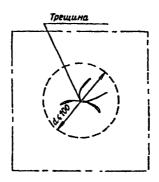


Рис. 20.3. Исправление скопления трещин путем вварки заглушки

20.3.6. Заварка трещин в мостиках между трубными отверстиями допускается, если их длина (при расположении трещин цепочкой через несколько мостиков — суммарная длина) не превышает 10% длины мостиков в направлении трещины. При большей длине трещин или концентрации их на большом участке ремонт этого участка барабана производят путем вварки заплаты.

20.4. Вварка заплат

20.4.1. Вварка заплат (вставок) в тело барабана производится в том случае, если дефекты в виде трещин, раковин, выпучин, вмятин, коррозионных растрескиваний настолько значительны или охватывают такую большую поверхность барабана, что устранить их путем наплавки или заварки нецелесообразно или невозможно (см. пп. 20.2.1 и 20.3.2). Если заплата устанавливается в районе трубных отверстий, то сварные швы не должны пересекать трубные отверстия.

20.4.2. Заплата должна изготавливаться из листовой стали одной из марок, приведенных в п. 20.1.1. Толщина заплаты должна быть равна толщине барабана или превышать ее не более чем на 3 мм.

Металл, из которого изготавливается заплата, должен иметь сертификат завода-изготовителя.

20.4.3. Форма вырезки дефектного участка барабана должна по возможности приближаться к кругу, овалу или прямоугольнику с радиусом закругления в углах не менее 50 мм. Кромка реза должна отстоять от дефекта на расстоянии не менее 30 мм.

Лист, из которого будет изготавливаться заплата, должен быть проконтролирован на сплошность, изогнут на вальцах или другим способом радиусом, равным радиусу барабана.

Вырезка дефектного участка барабана и заплаты из листа производится по шаблону кислородной, плазменно-дуговой или воздушно-дуговой резкой с припуском на механическую обработку для удаления следов огневой резки.

Размеры заплаты должны быть такими, чтобы при установке ее в барабан зазор по всему периметру был в пределах 2–4 мм.

Кромки на заплате и барабане обрабатываются под стыковое соединение с углом 15° и притуплением 1,5–2 мм.

- 20.4.4. Подготовку кромок заплаты и барабана следует выполнять таким образом, чтобы по возможности избегать потолочных швов. Поэтому если заплата ставится в нижней части барабана, то раскрытие кромок должно быть внутри барабана и, следовательно, сварка должна производиться изнутри. В случае постановки заплаты в верхней части барабана раскрытие кромок делается с наружной стороны барабана, и сварка производится снаружи.
- 20.4.5. Заплаты небольшого размера (длиной или диаметром до 200 мм) устанавливаются с равномерным зазором по всему периметру 2—4 мм и прихватываются через каждые 150—200 мм швами длиной 15—20 мм и высотой 8—10 мм. Заплаты

большего размера следует устанавливать с помощью сборочных планок, приваренных к заплате по всему периметру с обеих сторон (внутренней и наружной) на таком расстоянии друг от друга, чтобы было обеспечено правильное положение заплаты относительно барабана (рис. 20.4). Сборочные планки могут быть изготовлены из любой марки стали, указанной в п. 20.1.1, длиной 100–150 мм, сечением примерно 20×12 мм. Заплата устанавливается со смещением так, чтобы с двух сторон зазор совсем отсутствовал или был меньше, чем с противоположных сторон, где он должен составлять 3–5 мм.

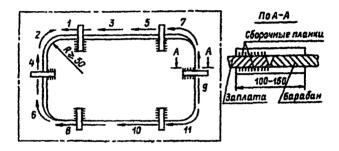


Рис. 20.4. Установка заплаты на сборочных планках

20.4.6. Сварка начинается со стороны, собранной с большим зазором, и ведется обратноступенчатым способом участ-ками длиной 150–200 мм от ее середины в направлении и последовательности, указанными на рис. 20.4 стрелками и цифрами. По мере заполнения разделки сборочные планки срубаются и места приварки планок зачищаются абразивным инструментом.

После заполнения разделки производится подварка корня шва с предварительной зачисткой и, при необходимости, с подрубкой металла шва.

20.4.7. Поверхность сварного шва с обеих сторон должна быть обработана абразивным инструментом согласно требованиям п. 20.3.4.

20.5. Глушение трубных отверстий

20.5.1. В случае необходимости глушения трубного отверстия барабана применяют одну из конструкций заглушек, приведенных на рис. 20.5.

Колпачковая заглушка (рис. 20.5, а) может устанавливаться на барабаны котлов давлением до 4 МПа (40 кгс/см²). Заглушку с приварным донышком (рис. 20.5, б) разрешается устанавливать на барабаны котлов давлением до 1,3 МПа (13 кгс/см²).

Заглушки изготавливаются из углеродистой или низколегированной конструкционной стали.

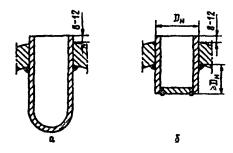


Рис. 20.5. Конструкция заглушек трубных отверстий барабана: а – заглушка колпачковая; б – заглушка с приварным донышком

- 20.5.2. Перед установкой заглушки поверхности барабана вблизи очка (отверстия под заглушку) и самого очка должны быть тщательно очищены до металлического блеска и осмотрены на предмет обнаружения трещин. В случае наличия трещин они должны быть удалены и при необходимости заварены в соответствии с рекомендациями подраздела 20.3.
- 20.5.3. Заглушки должны устанавливаться донышками внутрь барабана и привариваться по возможности изнутри барабана. Приварку заглушек снаружи барабана разрешается производить в исключительных случаях, когда нельзя это сделать изнутри барабана вследствие наличия мешающих внутрибарабанных устройств.

20.5.4. Сварку следует производить электродами диаметром не более 3 мм с минимальным тепловложением многослойным швом катетом, равным толщине трубы, из которой изготовлена заглушка.

20.6. Устранение неплотностей вальцовочных соединений

20.6.1. Перед устранением неплотности вальцовочного соединения с помощью сварки должны быть тщательно проверены поверхности барабана вокруг ввальцованной трубы и сама труба на предмет обнаружения трещин и других повреждений. Обнаруженные дефекты должны быть устранены до обварки вальцовочного соединения.

20.6.2. Устранение неплотностей вальцовочных соединений производится путем наложения шва изнутри (рис. 20.6, а) или снаружи барабана (рис. 20.6, б). Нельзя делать обварку одного соединения с обеих сторон – изнутри и снаружи барабана.

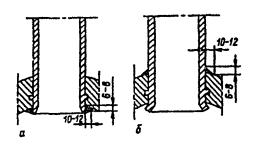


Рис. 20.6. Устранение неплотностей вальцовочных соединений с помощью сварки: а — обварка изнутри барабана; б — обварка снаружи барабана

20.6.3. Сварку следует производить электродами диаметром не более 3 мм с минимальным тепловложением многослойным швом. Размер шва указан на рис. 20.6.

21. ОФОРМЛЕНИЕ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ НА СВАРОЧНЫЕ РАБОТЫ

- 21.1. Монтажная (ремонтная) организация оформляет на сварочные работы техническую документацию по следующим изделиям и узлам энергетического оборудования:
- а) трубным системам паровых котлов рабочим давлением $P_{\rm p} > 0,07~{\rm M}$ Па (0,7 кгс/см²) (в том числе по трубопроводам в пределах котла и турбины);
- б) трубным системам водогрейных котлов (в том числе по трубопроводам в пределах котла) с температурой $T_B > 115\,^{\circ}\mathrm{C}$;
- в) трубопроводам пара и горячей воды категории I диаметром $\mathcal{L}_{H} > 51$ мм и трубопроводам пара и горячей воды II— IV категорий диаметром $\mathcal{L}_{H} > 76$ мм, на которые распространяются правила Госгортехнадзора России;
 - г) газопроводам на территории монтируемого объекта;
 - д) мазутопроводам давлением P_n ≥1,6 МПа (16 кгс/см²);
- е) трубопроводам системы регулирования и системы смазки турбины и питательных насосов;
- ж) трубопроводам теплоснабжения, подпадающим под действие правил Госгортехнадзора России (см. сноску 1 к табл. 18.4), диаметром $\mathcal{L}_{H} > 76$ мм;
- з) сбросным, растопочным, дренажным, выхлопным трубопроводам диаметром $\mathcal{J}_{H} > 76$ мм.

Для остальных трубопроводов техническая документация на сварочные работы не оформляется.

21.2. Формы технической документации, рассмотренные в настоящем разделе и приведенные в приложении 27, являются рекомендуемыми. Могут быть использованы другие формы при условии, что в них отражена требуемая информация.

По трубопроводам, на которые не распространяются правила Госгортехнадзора России (газопроводы, тепловые сети, трубопроводы водоснабжения и канализации и др.), техническая документация на сварочные работы должна включать сведения, оговоренные соответствующими СНиП или другими нормативными документами.

На паровые котлы с давлением пара до 0,07 МПа (0,7 кгс/см²) и водогрейные котлы и водоподогреватели с температурой воды до 115 °C техническая документация на сварочные работы отдельно не оформляется, но каждый котел или водоподогреватель снабжается заводом-изготовителем паспортом по форме, приведенной в Правилах устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см²), водогрейных котлов и водоподогревателей с температурой воды не выше 388 К (115 °C).

- 21.3. Предприятие (завод, монтажная, ремонтная организация), проводящее производственную аттестацию технологии сварки в соответствии с ПБ 03-164–97, должно оформить протокол заседания аттестационной комиссии и представить его (или заверенную копию) в местный орган госгортехнадзора и заказчику (дирекции ТЭС).
- 21.4. Проектная организация, разрабатывающая проект производства работ (ППР), составляет перечень трубопроводов, подлежащих сдаче заказчику. Перечень согласовывается с заказчиком и сдается ему после окончания монтажа (ремонта) вместе со сварочной сдаточной документацией. Пример составления перечня трубопроводов приведен в приложении 27, форма П27.1.
- 21.5. Основным документом на сварочные работы являются «Сведения о сварных соединениях и результатах их контроля» (см. приложение 27, форма П27.2). Его составляет монтажная (ремонтная) организация на основании первичной документации—сертификатов на сварочные материалы, актов, протоколов и заключений по контролю качества сварных соединений, диаграмм или журнала термообработки. Рабочий экземпляр этого документа заполняет монтажная (ремонтная) организация в процессе выполнения сварочных работ в виде журнала, который может не отличаться от указанной формы П27.2, за исключением того, что в журнале должна указываться фамилия бригадира слесарей—сборщиков стыка и термиста, проводившего термообработку стыка, и должны быть их подписи.

21.6. На каждое свариваемое изделие или его узел, перечисленные в подразделе 21.1, монтажная (ремонтная) организация подбирает или оформляет следующую документацию:

схему расположения сварных стыков трубопроводов;

сварочный формуляр элементов котла;

сертификаты (или их копии) на основной металл, заказчи ком которого была непосредственно монтажная (ремонтная) организация;

сертификаты (или их копии) на электроды и сварочную проволоку, использованные при сварке;

акт на проверку сварочно-технологических свойств электродов;

сводную таблицу сварных стыков;

сведения о сварщиках, выполнявших сварочные работы на данном объекте;

акт на заварку контрольных или вырезку производственных сварных соединений (в случае проведения механических испытаний и/или металлографических исследований согласно п. 18.6.4);

акт на визуальный контроль сварных соединений;

протоколы механических испытаний и металлографических исследований образцов сварных соединений (если таковые проводятся);

заключения по ультразвуковому контролю и/или радиографированию сварных соединений;

протокол стилоскопирования легированных деталей трубопроводов и элементов котла, а также сварных швов;

протокол измерения твердости металла шва;

диаграммы или журнал термообработки сварных стыков.

21.7. На трубопроводы, перечисленные в подразделе 21.1, организация, разрабатывающая ППР, составляет схемы расположения сварных стыков (см. приложение 27, форма П27.3). Каждая схема должна охватывать весь трубопровод или участок трубопровода, заканчивающийся запорным или регулирующим органом либо местом вварки трубопровода в другой трубопровод или узел (коллектор, тройник и т. п.).

На схеме (или в виде отдельных таблиц, прилагаемых к ней) должны быть приведены следующие сведения:

диаметр и толщина стенки трубы;

марки стали труб;

расположение и номера сварных стыков: заводским стыкам присваивается номер рядом расположенного на этом трубопроводе монтажного стыка с индексом «зав»;

расположение опор, арматуры, штуцеров, бобышек для измерения ползучести, спускных, продувочных и дренажных устройств;

расстояния между сварными стыками (местонахождение дополнительных стыков и стыков, расположение которых изменено в процессе монтажа, указывает монтажная организация);

список деталей, подлежащих стилоскопированию;

номера, названия рабочих чертежей, на основании которых выполнена схема.

Нумерация стыков на схеме и во всех документах (заключениях, протоколах, журналах) должна быть единой.

При появлении дополнительных стыков их обозначают номером стыка, расположенного рядом на этом трубопроводе, с индексом «а», «б» и т. д. К каждой схеме трубопровода прилагается «Сводная таблица сварных стыков» (см. приложение 27, форма П27.4).

- 21.8. Для элементов котла организация, разрабатывающая ППР, составляет сварочный формуляр (см. приложение 27, форма П27.5). В нем должны быть указаны места расположения и номера монтажных стыков. К каждому формуляру прилагается «Сводная таблица сварных стыков» (см. приложение 27, форма П27.4).
- 21.9. Сведения о сварщиках, выполнявших сварочные работы на данном энергообъекте по изделиям и узлам, перечисленным в подразделе 21.1, составляют по форме П27.6 приложения 27.
- 21.10. Проверку технологических свойств электродов и соответствия присадочного материала марочному составу оформляют актом (см. приложение 27, формы П27.7 и П27.8).

- 21.11. Сварку контрольного или вырезку производственного стыка для проверки качества сварного соединения оформляют соответствующими актами (см. приложение 27, формы П27.9 и П27.10).
- 21.12. Визуальный контроль и измерения размеров швов сварных стыков оформляют актом по форме П27.11 приложения 27.
- 21.13. При сдаче в лабораторию образцов сварных соединений для механических испытаний, металлографических исследований и химического (количественного спектрального) анализа монтажный (ремонтный) участок оформляет наряд-заказ (см. приложение 27, форма П27.12) или сопроводительную маркировочную ведомость. В этих сопроводительных документах даются полные характеристики образцов. Наряд-заказ оформляют в двух экземплярах, один из которых отправляют с образцами в лабораторию металлов, другой оставляют в делах монтажного (ремонтного) участка.
- 21.14. Результаты механических испытаний и металлографических исследований образцов сварных стыков оформляют протоколами (см. приложение 27, формы П27.13 и П27.14). В эти протоколы лаборатория, проводившая испытания, вносит характеристики испытанных и исследованных образцов, приведенные в сопроводительном документе (наряд-заказе) монтажного (ремонтного) участка. В заключении о металлографических исследованиях описывают микро- и макроструктуру, а также оценивают качество сварки (удовлетворительное или неудовлетворительное). При получении неудовлетворительных результатов исследований в протоколе (или в виде отдельного приложения к нему) следует давать фотографии дефектных макрошлифов в натуральную величину, а также фотографии участков микрошлифа с неудовлетворительной структурой при 100—500-кратном увеличении.
- 21.15. На сварные стыки, подвергавшиеся ультразвуковому контролю или радиографированию, оформляют заключение с оценкой их качества (см. приложение 27, формы П27.15

- и П27.16). Результаты контроля, кроме того, заносят в специальный журнал, который является первичным документом и хранится в делах лаборатории, проводившей контроль, или монтажного (ремонтного) участка.
- 21.16. Результаты стилоскопирования деталей и трубопроводов из легированных сталей, а также сварных швов, выполненных легированным присадочным материалом, оформляют протоколом (см. приложение 27, форма П27.17). Протокол стилоскопирования прилагают к сварочному формуляру котла или схеме расположения сварных стыков трубопровода.

При стилоскопировании элементов поверхностей нагрева котла и их креплений нумерация деталей и сварных стыков должна соответствовать их нумерации в сварочном формуляре (см. приложение 27, форма П27.5) или на рабочих чертежах, о чем делают соответствующую ссылку в протоколе. Формы документации по стилоскопированию, включая схемы и чертежи узлов и деталей, подлежащих стилоскопированию, разрабатывает проектная организация, составляющая ППР.

- 21.17. Результаты измерения твердости металла шва оформляют протоколом по форме П27.18 приложения 27.
- 21.18. Режим термообработки сварных стыков трубопроводов должен записываться регистрирующим потенциометром (в координатах температура—время).

На записанной диаграмме проставляются названия узла (трубопровода), номер схемы расположения стыков трубопровода, номер стыка, диаметр и толщина стенки трубы, марка стали и дата проведения термообработки.

Если температуру стыка контролируют без автоматической записи режима, термист ведет журнал термообработки (см. приложение 27, форма П27.19), в котором фиксирует режим термообработки (через каждые 30 мин). После охлаждения стыка до 300 °С температуру можно не записывать.

21.19. Результаты проверки сварных соединений путем прогонки металлического шара оформляют актом по форме П27.20 приложения 27.

21.20. Монтажная (ремонтная) организация после окончания монтажных (ремонтных) работ передает заказчику техническую документацию на сварочные работы по изделиям и узлам, перечисленным в подразделе 21.1, а, б, д, е, ж, а также по:

трубопроводам пара и горячей воды категории I с условным проходом $\mathcal{A}_{\omega} > 70$ мм;

трубопроводам пара и горячей воды II и III категорий с условным проходом \mathcal{A}_{y} > 100 мм, а также трубопроводам IV категории с условным проходом \mathcal{A}_{y} > 100 мм, расположенным в пределах зданий электростанций и котельных;

газопроводам подземным и внутри зданий.

Все остальные изделия (узлы), а также трубопроводы, не перечисленные в подразделе 21.1, сдаются с удостоверением о качестве изготовления и монтажа.

21.21. На изделия и узлы, перечисленные в подразделе 21.20, монтажная (ремонтная) организация передает заказчику следующие документы:

сведения о сварных соединениях и результатах их контроля (см. приложение 27, форма П27.2);

схемы расположения сварных стыков трубопроводов (см. приложение 27, форма П27.3) со сведениями, перечисленными в п. 21.7, и «Сводной таблицей сварных стыков» (см. приложение 27, форма П27.4);

сварочные формуляры элементов котла (см. приложение 27, форма П27.5) со сведениями, указанными в подразделе 21.8, и «Сводной таблицей сварных стыков» (см. приложение 27, форма П27.4);

сведения о сварщиках, выполнявших работы по изделиям, перечисленным в подразделе 21.1 (см. приложение 27, форма П27.6).

Вся остальная документация на сварочные работы, оформленная в соответствии с требованиями настоящего раздела, а также копии документов, переданных заказчику, хранятся в делах монтажной (ремонтной) организации. Срок хранения определяется соответствующей НТД. Передачу заказчику сварочной документации оформляют двусторонним актом.

21.22. Техническую сварочную документацию на специфические ремонтные работы (ремонт барабанов котлов, исправление дефектов в литых деталях, приварку шипов к экранным трубам котлов и др.) оформляют в соответствии с РДИ 34-38-043—86.

Документацию на ремонт барабанов, коллекторов, камер паровых котлов давлением пара 4 МПа (40 кгс/см²) и менее и водогрейных котлов разрешается ограничить чертежом развертки изделия с указанием расположения и размеров дефектов, заключением о проведенном контроле дефектного участка, сертификатом на основной металл и электроды, заключением о неразрушающем контроле заваренного участка.

КАТЕГОРИИ И ГРУППЫ ТРУБОПРОВОДОВ ПАРА И ГОРЯЧЕЙ ВОДЫ (ПО ПРАВИЛАМ ГОСГОРТЕХНАДЗОРА РОССИИ)

Категория трубо-	Груп- па	1	Рабочие четры среды
проводов		температура, °С	давление (избыточное), МПа (кгс/см²)
l	1	Выше 560	Не ограничивается
	2	Выше 520 до 560 включительно	Не ограничивается
	3	Выше 450 до 520 включительно	Не ограничивается
	4	До 450	Более 8 (80)
II	1	Выше 350 до 450 включительно	До 8 (80)
	2	До 350	Более 4 (40) до 8 (80) включительно
III	1	Выше 250 до 350 включительно	До 4 (40) включительно
	2	До 250	Более 1,6 (16) до 4 (40) включительно
IV		Выше 115 до 250 включительно	Более 0,07 (0,7) до 1,6 (16) включительно

Примечание. Если значения параметров среды находятся в разных категориях, то трубопровод следует отнести к категории, соответствующей максимальному значению параметра среды.

ХИМИЧЕСКИЙ СОСТАВ СТАЛЕЙ, ПРИМЕНЯЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБОПРОВОДОВ И ТРУБНЫХ СИСТЕМ КОТЛОВ

Таблица П2.1

Трубы из углеродистой стали, состав, %

Марка стали	НТД на сталь	Углерод	Кремний	Марганец	Фос- фор	Cepa	Другие элементы	
					не б	олее	1	
Ст2сп	FOCT 380	0,09-0,15	0,15-0,30	0,25-0,50	0,04	0,05	Хром, никель,	
Ст3пс		0,14-0,22	0,05-0,15	0,40-0,65	0,04	0,05	медь не более 0,3% каждого	
Ст3сп	1	0,14-0,22	0,15-0,30	0,40-0,65	0,04	0,05	элемента	
08	ГОСТ 1050	0,05-0,12	0,17–0,37	0,35-0,65	0,035	0,04	Хром не более 0,1%	
10		0,07–0,14	0,17-0,37	0,35-0,65	0,035	0,04	Хром не более 0,15%	
20		0,17-0,24	0,17-0,37	0,35-0,65	0,035	0,04	Хром не более 0,25%	

308

20	ТУ 14-1-1529–93, ТУ 14-1-2560–78, ТУ 14-1-1787–76, ТУ 14-3-341–75	0,17-0,24	0,17–0,37	0,35–0,65	0,03	0,025	Никель, хром не более 0,25% каждого элемента; медь не более 0,30%
	ТУ 14-3-808–78* ¹	0,17-0,24	0,17–0,37	0,35–0,65	0,035	0,04	Хром, никель, медь не более 0,25% каждого элемента; алюми- ний 0,02-0,03%
20ПВ* ²	ТУ 14-1-5185–93	0,18–0,24	0,17–0,37	0,35–0,65	0,005– 0,015	0,002- 0,015	Хром, никель, медь не более 0,15% каждого элемента; вана- дий 0,002–0,1%; алюминий 0,002– 0,009%

^{*1} В металле труб при соблюдении норм механических свойств, определенных требованиями ТУ 14-3-808-78, допускаются отклонения по химическому составу в соответствии с ГОСТ 1050.

^{*2} Массовая доля азота, остаточных элементов и цветных металлов должна соответствовать следующим нормам: массовая доля элементов, %

Азот	Цинк	Опово	Свинец	Мышьяк	Висмут	Сурьма	Молибден	Титан	Вольфрам
0,002-	0,0005	0,0005–	0,0003-	не бол е е	0,0001	0,0005 	не более	не более	не более
0,012	0,004	0,004	0,004	0,010	0,003	0,003	0,10	0,05	0,05

Трубы из низколегированной и

Марка стали	НТД на сталь	Угле- род	Крем- ний	Мар- ганец	Хром
10Г2	FOCT 4543	0,07– 0,15	0,17- 0,37	1,2- 1,6	≤ 0,3
09F2C	ГОСТ 19281	≤ 0,12	0,5– 0,8	1,3- 1,7	≤ 0,3
15ГC	ТУ 14-1-1529—93, ТУ 14-1-2560—78, ТУ 14-1-1787—76	0,12- 0,18	0,7– 1,0	0,9– 1,3	≤0,3
16FC	FOCT 19281	0,12- 0,18	0,4- 0,7	0,9– 1,2	≤ 0,3
17FC	ГОСТ 19281	0,14- 0,20	0,4- 0,6	1,0- 1,4	≤ 0,3
17Г1C	FOCT 19281	0,15- 0,20	0,4- 0,6	1,15- 1,60	≤0,3
17Г1С* ¹ , 17Г1С-У* ^{1,2}	ТУ 14-3-954—80, изменение 3	0,15- 0,20 0,15- 0,20	0,4- 0,6 0,4- 0,6	1,15– 1,55 1,15– 1,55	≤0,3 ≤0,3
17Г1С–У* ³	ТУ 14-3-1698-90	0,15- 0,20	0,4- 0,6	1,15– 1,55	≤0,3
12MX	FOCT 20072	0,09- 0,16	0,12- 0,37	0,4- 0,7	0,4- 0,7
15XM* ⁴	ТУ 14-1-1529-93, ТУ 14-1-2560-78	0,10- 0,15	0,17- 0,37	0,4- 0,7	0,8- 1,1
12Х1МФ	ТУ 14-1-1529–93, ТУ 14-3-341–75, ТУ 14-1-2560–78	0,10- 0,15	0,17– 0,37	0,4- 0,7	0,9– 1,2
12Х1МФ-ПВ*⁵	ТУ 14-1-5271-94	0,11– 0,15	0,17– 0,37	0,4- 0,7	0,9– 1,2

легирированной стали, состав %

Молиб-	Ванадий	Фосфор	Cepa	Другие			
ден		не бо	лее	элементы			
-	-	0,035	0,035				
_	-	0,035	0,040				
-	-	0,035	0,025	Никель, медь не более 0,3% каждого элемента			
-	-	0,035	0,040				
		0,035	0,040				
-	1	0,035	0,040				
-		0,035	0,030	Никель, медь не более 0,3% каждого элемента;			
-	-	0,025	0,010	алюминий 0,015–0,050%			
-	-	0,025	0,020	Никель, медь не более 0,3% каждого элемента; (алюминий + титан) 0,015–0,050%			
0,4-0,6	1	0,025	0,025	Никель не более 0,3%; медь не более 0,2%			
0,40– 0,55	-	0,035	0,025	Никель ≤ 0,25%; медь ≤ 0,20%			
0,25– 0,35	0,15– 0,30	0,025	0,025	Никель ≤ 0,25%; медь не более 0,20%			
0,25– 0,35	0,15 0,30	0,002- 0,015	0,002- 0,015	Никель, медь не более 0,15% каждого элемен- та; алюминий 0,002– 0,009%			

Марка стали	НТД на сталь	Угле- род	Крем- ний	Мар- ганец	Хром
15Χ1Μ1Φ* ⁶	ТУ 14-1-2560-78, ТУ 14-1-1529-93, ТУ 14-1-1787-76	0,10- 0,15	0,17- 0,37	0,4- 0,7	1,1– 1,4
	ТУ 3-923-75	0,10 0,16	0,17- 0,37	0,4- 0,7	1,1 1,4
15Х1М1Ф-ЦЛ	ТУ 108.874-95	0,10- 0,15	0,17- 0,37	0,4- 0,7	1,1 <u>–</u> 1,4
12X2M1	_	≤ 0,15	0,1- 0,5	0,3- 0,6	1,9- 2,6
12Х2МФСР	ТУ 14-1-1529-93	0,08- 0,15	0,4- 0,7	0,4- 0,7	1,6 1,9
12Х2МФБ	_	0,08- 0,12	0,4- 0,7	0,4- 0,7	2,1- 2,6
10Х9МФБ (ДИ 82-Ш)	ТУ 14-134-319-93	0,08- 0,12	не бо- лее 0,5	0,3- 0,6	8,6– 10,0

^{*}¹ В металле для термообработанных труб отклонения по нижнему и верхнему пределу химического состава не допускаются.

массовая доля элементов, %

Азот Цинк Олово Свинец Мышьяк 0,002-0,012 0,0005-0,0040 0,0005-0,0040 0,0003-0,0040 не более 0,010

массовая доля элементов, %

 Висмут
 Сурьма
 Титан
 Вольфрам

 0,0001–0,0030
 0,0005–0,0030
 не более 0,05
 не более 0,05

 $^{^{*2}}$ Допускается поставка стали 17Г1С-У с содержанием углерода не менее 0,13%.

^{*3} Допускается в отдельных плавках стали марки 17Г1С-У массовая доля марганца до 1,6%.

^{*4} Для стали марки 15ХМ отклонение по содержанию углерода допускается на минус 0,02%.

^{*5} Массовая доля азота, остаточных элементов и цветных металлов должна соответствовать следующим нормам:

Молиб-	Ванадий	Фосфор	Cepa	Другие
ден		не бо	лее	элементы
0,9–1,1	0,20- 0,35	0,025	0,025	Никель ≤ 0,25%; медь ≤ 0,25%
0,9–1,1	0,20 <u>–</u> 0,35	0,025	0,025	Никель ≤0,4%; медь ≤0,25%
0,9–1,1	0,20- 0,35	0,020	0,020	Никель ≤ 0,25%; медь ≤ 0,25%
0,9–1,1	-	0,030	0,030	
0,5–0,7	0,20– 0,35	0,025	0,025	Бор 0,002–0,005%; ни- кель, медь не более 0,25% каждого элемента
0,5–0,7	0,20- 0,35	0,025	0,025	Ниобий 0,5–0,8%; ни- кель, медь не более 0,25% каждого элемента
0,6-0,8	0,10 <u>–</u> 0,20	0,030	0,015	Церий 0,05% по расчету; ниобий 0,1–0,2%

^{*6} Для стали марки 15Х1М1Ф, выплавленной в электропечах, содержание углерода должно быть 0,11-0,16%, марганца 0,6-0,9% включительно.

Примечания.

- 1. Массовые доли азота в стали по ГОСТ 19281–89 не более 0,012%, мышьяка не более 0,08%.
- 2. Эквивалент по углероду каждой плавки низколегированной стали 17ГС и 17Г1С не должен превышать 0,48 (ТУ 14-3-620-92), стали 17Г1С-У не более 0,46 (ТУ 14-3-1698-90).
- 3. Допускается поставка отдельных плавок стали 17Г1С-У по ТУ 14-3-1698–90 с суммарной массой долей алюминия и титана не менее 0,010% или не более 0,060% при условии обеспечения механических свойств стали в соответствии с ТУ 14-1-1950–89.

Трубы из высоколегиро-

Марка стали	НТД на сталь	Угле- род	Крем- ний	Мар- ганец
12X11B2MФ (ЭИ-756)	ТУ 14-1-1529-93	0,09 - 0,14	≤ 0,5	0,5– 0,8
12X18H12T	ТУ 14-1-1529-93, ТУ 14-3-796-79	≤ 0,12	≤ 0,8	1,0- 2,0
12X18H10T	FOCT 5632	≤ 0,12	≤ 0,8	≤ 2,0
10Х13Г12БС2Н2Д2* ^{1,2} (ДИ 59)	ТУ 14-1-2870-80, ТУ 14-131-871-93	0,06 - 0,10	1,8– 2,2	12,0- 13,5

 $^{^{\}star 1}$ В стали ДИ 59 цирконий, церий, титан, бор и алюминий химическим анализом не определяются.

ванной стали, состав, %

Хром	Никель	Молиб- ден	Фос- фор	Cepa	Другие элементы
			не б	олее	
10,0- 12,0	≤ 0,6	0,6– 0,9	0,025	0,025	Вольфрам 1,7–2,2%; ванадий 0,15–0,30%; медь не более 0,3%; титан не более 0,05%
17,0- 19,0	11,0- 13,0	_	0,035	0,020	Титан 5·С– 0,70%; медь не более 0,3%
17,0- 19,0	9,0 <u>–</u> 11,0	-	0,035	0,020	Титан не более 0,8%; медь не более 0,3%
11,5– 13,0	1,8– 2,5		0,020	0,030	Ниобий 0,6—1,0%; медь 2,0—2,5%; цирко- ний до 0,1%; церий до 0,08%; титан до 0,1%; бор до 0,003%; алюми- ний до 0,25%

 $^{^{*2}}$ Количество lpha-фазы в стали ДИ 59 до 2%, по согласованию с заказчиком — до 2,5%.

Отливки из углеродистой стали по ГОСТ 977, состав, %

Марка	Группа	Углерод	Марганец	Кремний	Фосфор		Cepa		
стали	отливок				в стали				
					основной	основной марте- новской	основ- ной	основной мартенов- ской	
						не бо	лее		
15Л	2	0,12-0,20	0,45–0,90	0,20-0,52	0,035	0,040	0,035	0,045	
20Л	2	0,17–0,25	0,45-0,90	25 0.45 0.00	0,20-0,52	0,035	0,040	0,035	0,045
	3	0,17-0,25	0,45-0,90	,90 0,20-0,52	0,030	0,040	0,030	0,045	
25Л	2	0,22–0,30	0,45–0,90	0,20-0,52	0,035	0,040	0,035	0,045	
	3	0,22-0,30	0,45-0,90	0,20-0,52	0,030	0,040	0,030	0,045	
30Л	2	0.27–0.35	0,45-0,90	0,20-0,52	0,035	0,040	0,035	0,045	
	3	0,27-0,55	0,40-0,90	0,20-0,52	0,030	0,040	0,030	0,045	
35Л	2	0,32-0,40	0,45–0,90	0,20-0,52	0,035	0,040	0,035	0,045	
	3	0,32-0,40	0,45-0,90 0,20-0,52		0,030	0,040	0,030	0,045	

Отливки из углеродистой и легированной стали по ОСТ 108.961.03, состав, %

Марка стали	Углерод	Кремний	Марга- нец	Хром	Молиб- ден	Ванадий	Фос- фор не бо	Сера	Другие элементы
25Л	0,22-0,27	0,20-0,52	0,4-0,9	≤ 0,3	_		0,025	0,025	Никель,
20ГСЛ	0,16-0,22	0,6-0,8	1,0–1,3	≤ 0,3	-	_	0,025	0,025	медь
20ХМЛ	0,15-0,22	0,20-0,45	0,5–0,8	0,5–0,8	0,40,6	-	0,025	0,025	0.00/
20ХМФЛ	0,18-0,25	0,2-0,4	0,60,9	0,9–1,2	0,5–0,7	0,2–0,3	0,025	0,025	дого эле-
15Х1М1ФЛ	0,14-0,20	0,2-0,4	0,6–0,9	1,2–1,7	0,9–1,2	0,25–0,40	0,025	0,025	мента

Примечание. Область применения каждой марки стали устанавливается соответствующим НТД: «Правилами устройства и безопасной эксплуатации паровых и водогрейных котлов»; «Правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды».

317

МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛЕЙ, ПРИМЕНЯЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБОПРОВОДОВ И ТРУБНЫХ СИСТЕМ КОТЛОВ

Таблица ПЗ.1

Бесшовные трубы

	· ·									
Марка стали, НТД на сталь	НТД на поставку труб	Временное сопротивление разрыву, МПа (кгс/мм²)		Относи- тельное удлине- ние, %	Относи- тельное суже- ние, %	Ударная вязкость <i>КСU</i> , Дж/см ² (кгс-м/см ²)	Твердость по Бри- неллю, НВ, не более			
		не менее								
10, FOCT 1050	ГОСТ 8731 (группа В)	353 (36)	216 (22)	24	-	*3	137			
	ГОСТ 8733 (группа В)	343 (35)	206(21)	24	-	*3	137			
	ТУ 14-3-190* ^{1,2} изменение 2	343–549 (35–56)	206 (21)	24	55	49 (5)	-			
20, FOCT 1050	ГОСТ 8731 (группа В)	412 (42)	245(25)	21	-	*3	156			

		ГОСТ 8733 (группа В)	412 (42)	245 (25)	21	-	* 3	156
	20, OCT 14-21, TY 14-1-1545, TY 14-1-2560, TY 14-1-1787	ТУ 14-3-190* ¹ изменение 2	412–588 (42–60)	245 (25)	21	45	49 (5)	-
	20, TY 14-1-1529, TY 14-1-2560, TY 14-1-5319	ТУ 14-3-460	412–549 (42–56)	216 (22)	<u>24</u> 22	<u>45</u> 40	49 (5) 39 (4)	-
319	20, FOCT 1050	ГОСТ 550* ⁴ (группа A)	<u>431 (44)</u> 412 (42)	255 (26) 245 (25)	<u>22</u> 23	<u>50</u> -	<u>78 (8)</u> -	156 156
	20-ПВ, ТУ 14-1-5185	ТУ 14-3-1881	450–549 (46–56)	265 (27)	26	55	69 (7)	-
	20, ТУ 14-3-341	ТУ 14-3-341	412–549 (42–56)	216 (22)	24	-	-	
	10Г2, ГОСТ 4543	ГОСТ 8731 (группа В)	421 (43)	265 (27)	21	_	* 3	197
		ГОСТ 8733 (группа В)	422 (43)	245 (25)	22	-	*3	197

Марка стали, НТД на сталь	НТД на поставку труб	Временное сопротивление разрыву, МПа (кгс/мм²)	(кгс/мм²)	Относи- тельное удлине- ние, %	Относи- тельное суже- ние, %	Ударная вязкость <i>КСU,</i> Дж/см² (кгс⋅м/см²)	Твердость по Бри- неллю, НВ, не более
09Г2С, ГОСТ 19281	ТУ 14-3-1128	470 (48)	265 (27)	22	-	для <i>S</i> , мм до свы 10 ше 10 34* ^{5,6} 29* ⁵ (3,5) (3,0	6
15ГС, ТУ 14-1-2560, ТУ 14-1-1787	ТУ 14-3-420	490 (50)	294 (30)	16	40	49 (5)	_
15ГС, ТУ 14-1-1529, ТУ 14-1-2560	ТУ 14-3-460	490 (50)	294 (30)	<u>18</u> 16	<u>45</u> 40	<u>59 (6)</u> 49 (5)	-
16ГС, ГОСТ 19281	ТУ 3-923	490 (50)	245 (25)	15	36	54 (5,5)	_

Π Ω	12МХ, ГОСТ 20072	ТУ 14-3-610	412 (42)	206 (21)	21	_	_	-
Сварка	15XM, TY 14-1-1529, TY 14-1-2560	ТУ 14-3-460	441–637 (45–65)	235 (24) 225 (23)	<u>21</u> 20	<u>50</u> 45	<u>59 (6)</u> 49 (5)	-
	12X1MФ, ТУ 14-1-1529, ТУ 14-1-2560	ТУ 14-3-460	441–637 (45–65)	274 (28)	<u>21</u> 19	<u>55</u> 50	<u>59 (6)</u> 49 (5)	-
321	12X1MФ, ТУ 14-3-341	ТУ 14-3-341	441–637 (45–65)	274 (28)	21		_	
	12Х1МФ-ПВ, ТУ 14-1-5271	ТУ 14-3-1952	460–590 (47–60)	295–430 (30–44)	<u>22</u> 19	<u>58</u> 52	98 (10) 78,4 (8)	-
	15Х1М1Ф, ТУ 14-1-2560, ТУ 14-1-1787	ТУ 14-3-420 изменение 3	490 (50)	314 (32)	16	45	39,2 (4)	
	15Х1М1Ф, ТУ 14-1-1529, ТУ 14-1-2560	ТУ 14-3-460	490–686 (50–70)	314 (32)	<u>18</u> 16	<u>50</u> 45	49 (5) 39 (4)	-

Марка стали, НТД на сталь	НТД на поставку труб	Временное сопротивление разрыву, МПа (кгс/мм²)	Предел текучес- ти, МПа (кгс/мм²)	Относи- тельное удлине- ние, %	Относи- тельное суже- ние, %	Ударная вязкость <i>КСU</i> , Дж/см ² (кгс-м/см ²)	Твердость по Бри- неллю, НВ, не более
				не менее			
15Х1М1Ф, ТУ 3-923	ТУ 3-923	490–686 (50–70)	314 (32)	17	45	39 (4)	-
15Х1М1Ф-ЦЛ, ТУ 108-874	ТУ 108-874	490–686 (50–70)	314 (32)	16	45	39 (4)	-
12X2M1	-	441 (45)	265 (27)	27	_	_	~
12Х2МФБ	_	412 (42)	190 (21)	24	_	-	-
12X2MФСР, ТУ 14-1-1529	ТУ 14-3-460	470 (48)	274 (28)	21	-	_	
10Х9МФБ (ДИ 82-Ш) ТУ 14-134-319	TY 14-3-1412	600 (61)	400 (41)	20	55	59 (6)	
12X11B2MФ, ТУ 14-1-1529	ТУ 14-3-460	588 (60)	392 (40)	<u>18</u> 17	- 45	- 49 (5)	255

12X18H12T, TY 14-1-1529	ТУ 14-3-460	529 (54)	216 (22)	35	55		200
12X18H12T, ТУ 14-3-796	ТУ 14-3-796	539–686 (55–70)	215–392 (22–40)	35	55	-	190
12X18H10T, FOCT 5632	ГОСТ 9941 ГОСТ 14162	549 (56)	216 (22)	35	_	-	-
10X13Г12БС2Н2Д2 (ДИ 59) ТУ 14-1-2870, ТУ 14-131-871	ТУ 14-3-917	588 (60)	216 (22)	40	50	_	_

^{*1} В случае определения механических свойств на образцах в виде полос или отрезка трубы относительное сужение не определяется.

^{*2} Для горячедеформированных труб предел текучести не менее 216 МПа (22 кгс/мм²), временное сопротивление разрыву 353–549 МПа (36–56 кгс/мм²) — изменение 3 к ТУ 14-3-190–82.

^{*3} По требованию потребителя изготавливаются трубы из стали марок 10 и 20 с ударной вязкостью не менее 3 кгс • м/см² при температуре –40 °C, марки 10Г2 – при температуре –60 °C.

^{*4} В числителе приведены механические свойства горячедеформированных, в знаменателе — холодно- и теплодеформированных труб.

^{*5} Значение величины ударной вязкости *КСU* при температуре испытания –70 °C и *КСV* при температуре испытания –30 °C. Для труб диаметром 114–140 и 351–426 мм поставки ЧТПЗ значение величины ударной вязкости *КСV* при температуре –30 °C не ниже 24,5 Дж/см² (2,5 кгс • м/см²) – изменение 6 к ТУ 14-3-1128–82.

^{*6} Допускается снижение ударной вязкости на одном из образцов *КСU* на 9,8 Дж/см² (1 кгс·м/см²), *КСV* – на 4,9 Дж/см² (0,5 кгс • м/см²) – ТУ 14-3-1128–82.

Примечания.

- 1. В числителе приведены значения механических свойств металла труб, определенные на продольных образцах, в знаменателе на поперечных.
- 2. Для горячедеформированных труб из стали марок 20, 15ГС, 15ХМ, 12Х1МФ и 15Х1М1Ф, поставляемых по исполнению Б ТУ 14-3-460, нормы временного сопротивления разрыву продольных и поперечных образцов в состоянии поставки должны быть:

	Mi ia	(KFC/MM²)
20	- 412–529	(42-54)
15FC	- 490-637	(50-65)
15XM	- 441-617	(45–63)
12Х1МФ	- 451-617	(46–63)
15Χ1M1Φ	- 500-676	(51–69)

- 3. Допускается снижение ударной вязкости на одном образце на 9,8 Дж/см² (1 кгс м/см²) от установленной ТУ 14-3-460 нормы при условии, что среднеарифметическое двух испытаний данной трубы будет не ниже величины, указанной в таблице. Снижение ударной вязкости на поперечных образцах из стали марок 20 и 15Х1М1Ф не допускается.
 - 4. Испытания на ударный изгиб проводят на трубах с толщиной стенки более 6 мм.

Марка НТД стали, на поставку		Времен- ное со-	Пре- дел	Относи- тельное	Ударная в	язкость, <i>КСU,</i> Дж/см ² (кгс не менее	м/см ²),	Примечание
на сталь	НТД труб против- сталь против- сталь против- дазрыву, ти, МПа (кгс/мм²) (кгс/ мм²)		удлине- ние, δ₅, %	п	после ме- хани- чес- кого ста- рения			
		н	е мене	e	-20	-40		
				омкаП	шовные тру	бы		
Ст2сп2, ГОСТ 380	ГОСТ 10705 (группа В)	333 (34)	206 (21)	24	-	-	-	
Ст3сп2, Ст3пс2, ГОСТ 380	термообра- ботанные	372 (38)	225 (23)	22	-	-	-	
СтЗсп5, ГОСТ 380					39 (4,0)	-	39 (4,0)	<i>КСU</i> при +20 °C – 78 Дж/см² (8,0 кгс·м/см²)

Марка стали,	НТД на поставку	Времен- ное со-	Пре- дел	Относи- тельное	Ударная в	язкость, <i>КСU,</i> Дж/см ² (к не менее	гс∙м/см ²),	Приме	эчание
нтд на сталь	труб	против- ление чес- разрыву, МПа (кгс/мм 2) (кгс/мм 2)			п	ри температуре испытания, °С	после ме- хани- чес- кого ста- рения		
		Н	е мене	е	20	-40			
Ст3сп3, ГОСТ 380	ГОСТ 10706 (группа В)	372 (38)	245 (25)	18	-	-	-	КС <i>U</i> пј +20 °С для :	
								от 5 до 9	свы- ше 9 до 20
								59	49
								Дж	/см ²
								(6,0)	(5,0)
								(KLC·V	л/см ²)

Ċ
N
7

Ст3сп4, ГОСТ 380					от 5	3 S, мм свыше 9 до 20			
					19,6 (2,0)		_	_	
Ст3сп4, ГОСТ 380	ГОСТ 10706 * ¹ (группа В)	372 (38)	245 (25)	23	29,	4 (3,0)	-	-	
Ст3сп5, ГОСТ 380	изменение 2				29,	4 (3,0)		29,4 (3,0)	
08, ГОСТ 1050		314 (32)	196 (20)	25			-	_	
10, ГОСТ 1050	термообра- ботанные	333 (34)	206 (21)	24	39	9 (4,0)	-	39	<i>КСU</i> при +20 °C −
20, ΓΟCT 1050		412 (42)	245 (25)	21			_	(4,0)	78 Дж/см² (8,0 кгс·м/ см²)
17FC, 17F1C, TY 14-1- 1921	ТУ 14-3-620	510 (52)	355 (36)	20		-	29 (3,0)* ²		Угол изгиба основного металла ≥ 180°

Марка стали,	НТД на поставку	Времен- ное со-	Пре- дел	Относи- тельное	Ударная в	язкость, <i>КСU,</i> Дж/см ² (кгс·м/с не менее	см ²),	Примечание
НТД на сталь	труб	против- ление разрыву, МПа (кгс/мм ²)	теку- чес- ти, МПа (кгс/ мм ²)	удлине- ние, δ₅, %	1	при температуре испытания, °С	после ме- хани- чес- кого ста- рения	
		ŀ	е мене	е	-20	-40		
17ГС, 17Г1С, ГОСТ 19281 (класс прочности К 52)	ГОСТ 20295 тип 3* ³	510 (52)	353 (36)	20	_	29,4 (3,0)* ⁴		Трубы типа 3 экспандиро- ванные, тер- мической обработке не подвер- гаются
17Γ1C-Y* ⁵ ,		510-630	360-	20	_	размер труб * ² , мм	_	Трубы экс-
ТУ 14-1- 1950 (класс прочности К 52)	1698 (взамен ТУ 14-3- 1138-82)	(52-64)	460 (37– 47)			диа- метр до свы- 10 ше 10 до 15		пандирован- ные

328

							1020	29,4 (3,0)	39,2 (4,0) 39,2 (4,0)	39,2 (4,0)		
					Трубы со	спиральным	швом					
	Ст3сп5, ТУ 14-1- 1457	ТУ 14-3-954	392 (40)	265 (27)	23	49,0 (5,0)*2			-		39,2* ² (4,0)	:
3	20 (класс прочности К 42)	ГОСТ 20295 тип 2	412 (42)	245 (25)	21	-		29,4	(3,0)* ⁶		-	
	20, TY 14-1- 2471	ТУ 14-3-808 изменение 1	412 (42)	245 (25)	23	29,4 (3,0)					29,4 (3,0)	Относитель- ное сужение ψ ≥ 45%
	17ГС, 17Г1С, ГОСТ 19281 (класс прочности К 52)	ГОСТ 20295 тип 2* ³	510 (52)	353 (36)	20	-			(3,0)* ⁷ (4,0)		-	

Марка стали,	НТД на поставку	Времен- ное со-	Пре- дел	тельное	Ударная в	язкость, <i>КСU,</i> Дж/см ² (кго не менее	с·м/см ²),	Примечание
НТД труб на сталь	труб	против- ление нес- разрыву, МПа (кгс/мм 2) (кгс/мм 2) (кгс/мм 2)			п	ри температуре испытания, °С	после меха- ниче- ского ста- рения	
		ŀ	е мене	е	-20	-40		
17Г1С, 17Г1С-У (высокий отпуск), ТУ 14-1- 4248	ТУ 13-4-954 изменение 3	510 (52)	353 (36)	20	_	39,2 (4,0)*2	39,2* ² (4,0)	
17Г1С, 17Г1С-У (улучше- ние), ТУ 14-1-4248		588 (60)	412 (42)	20	-	39,2 (4,0)	39,2 (4,0)	

- *1 Трубы для тепловых сетей термически обработанные.
- *2 На одном из образцов допускается снижение ударной вязкости на 9,8 Дж/см² (1 кгс м/см²).
- *3 Для труб типов 2-й и 3-й группы прочности К 52 по ГОСТ 20295 верхний предел временного сопротивления не должен превышать минимального значения более чем на 118 МПа (12 кгс/мм²).
 - ^{*4} Нетермообработанные трубы диаметром 530 820 мм.
- *5 Ударная вязкость *КСV* при температуре испытания 0 °C для труб диаметром 1020 мм должна быть не менее 29,4 Дж/см² (3,0 кгс м/см²), для труб диаметром 1220 мм не менее 39,2 (4,0).
 - *6 Ддя труб диаметром 219-377 мм.
- * 7 В числителе ударная вязкость нетермообработанных труб диаметром 530–820 мм при температуре 40 °C, в знаменателе термически упрочненных труб диаметром 530–820 мм при температурах 40 и 60 °C.

Таблица ПЗ.3

Электросварные трубы. Сварные соединения

Марка ста- ли труб	НТД на постав- ку труб	Тип сварно- го шва	Временное сопротив- ление раз-	У	дарная вязкость, <i>КС</i> Дж/см² (кгс·м/см²), не менее	U,	Место нанесения надреза на ударных образцах	ба,
	ļ	при из- готовле-	рыву, МПа (кгс/мм²)	прит	емпературе испытан	ия, °С		граду- сы, не
		нии труб	, ,	-20	-40	-60		менее
Ст3сп5, 10, 20	FOCT 10705	Про-	Не ниже норм для	_	-	-	-	-
Ст3сп3, Ст3сп4	ГОСТ 10706	доль- ный	основного металла труб* ³ (см. табл. П3.2)	_	_	_	-	-

Марка ста- ли труб	НТД на постав- ку труб	сварно- го шва	Временное сопротив- ление раз-	сопротив- Дж/см² (кгс·м/см²), надреза на ударн ление раз- не менее образцах			Место нанесения надреза на ударных образцах	Угол изги- ба,
		при из- готовле-	рыву, МПа (кгс/мм²)	при т	емпературе испытан	ия, °С		граду- сы, не
		нии труб		-20	-40	-60		менее
Ст3сп4, Ст3сп5	ГОСТ 10706 *1 изменение 2		-	29,4 (3,0)		-	_	100
17ΓC, 17Γ1C	ТУ 14-3-620			-	29 (3)* ²	-		180
17ГС, 17Г1С (класс прочности К 52)	ГОСТ 20295 тип 3	Про- доль-	Не ниже норм для основного металла	_	19,6 (2,0)* ⁴	1	Перпендикулярно прокатной поверх- ности по линии	-
17Г1С-У (класс прочности К 52)	TY 14-3-1698* ⁵	НЫЙ	труб* ³ (см. табл. П3.2)	_	S, мм* ² до 10 свы- свы- ше ше 10 15 до 15 24,5 29,4 39,2 (2,5) (3,0) (4,0)	-	сплавления шва, сваренного по- следним	180

Ст3сп5	ТУ 14-3-954	Спи-	49,0 (5,0)		-	По центру шва перпендикулярно	100
20	ТУ 14-3-808* ⁶	раль- ный	29,4* ⁷ (3,0)	-		прокатной поверх- ности металла	100
K 42)	ГОСТ 20295 тип 2		-	29,4 (3,0)* ⁸	-	Перпендикулярно прокатной поверх-	
17ГС, 17Г1С (класс прочности К 52)			_	29,4 (3,0)* ⁴	29,4* ⁴ (3,0)	ности по линии сплавления шва, сваренного по- следним	_
17Г1С, 17Г1С-У	ТУ 14-3-954 изменение 3		-	39,2 (4,0)	-	По центру шва перпендикулярно прокатной поверхности металла	

^{*1} Трубы для тепловых сетей термически обработанные.

^{*2} На одном из образцов допускается снижение ударной вязкости на 9,8 Дж/см² (1,0 кгс • м/см²).

^{*3} Временное сопротивление разрыву сварного соединения термически обработанных труб по ГОСТ 10705 диаметром от 50 до 203 мм должно быть не менее 0,9 от норм, указанных в табл. ПЗ.2.

^{*4} Трубы диаметром 530-820 мм.

^{*5} Трубы изготавливаются с двумя продольными швами. Сварка швов автоматическая дуговая под слоем флюса.

^{*6} При изготовлении труб должны применяться следующие сварочные материалы: при сварке спиральных, поперечных и кольцевых швов проволока Св-08ГА и флюс АН-60; при ремонте сварных соединений в среде СО₂ – проволока Св-08Г2С.

^{*7} Допускается снижение норм ударной вязкости на 4,8 Дж/см² (0,5 кгс • м/см²) против нормы, указанной в таблице.

^{*8} Трубы диаметром 219-426 мм.

Отливки из углеро-

Мар- ка стали	Груп- па отли- вок	Кате- гория проч- ности	Предел текуче- сти, от, МПа (кгс/ мм²)	Времен- ное со- против- ление, о _в , МПа (кгс/мм ²)	Отно- ситель- ное уд- лине- ние, %	Отно- ситель- ное су- жение, %	Ударная вязкость, <i>КСU,</i> Дж/см ² (кгс-м/см ²)
					не мене	е	
		Н	ормализа	ция или н	ормализа	зция с отг	туском
15Л	2	K 20	196 (20)	392 (40)	24	35	49 (5,0)
20Л		K 20	216 (22)	412 (42)	22	35	49 (5,0)
25Л	2,3	K 20	235 (24)	441 (45)	19	30	39,2 (4,0)
30Л	2,0	K 25	255 (26)	471 (48)	17	30	34,3 (3,5)
35Л		K 25	275 (28)	491 (50)	15	25	34,3 (3,5)

Примечание. Контролируемые характеристики при механических испытаниях для групп отливок:

- 2 предел текучести, временное сопротивление и относительное удлинение;
- 3 предел текучести, временное сопротивление, относительное удлинение и ударная вязкость.

дистой стали (по ГОСТ 977)

Катего- рия проч- ности	Предел текучести, о _т , МПа (кгс/мм²)	Времен- ное сопро- тивление, ов, МПа (кгс/мм²)	Относи- тельное удлине- ние, %	Относи- тельное сужение, %	Ударная вязкость, <i>КСИ,</i> Дж/см ² (кгс·м/см ²)
			не менее		
		Закалка	и отпуск		
	1		1	ı	-
-	-	-	_		-
KT 30	294 (30)	491 (50)	22	33	34,3 (3,5)
KT 30	294 (30)	491 (50)	17	30	34,3 (3,5)
KT 35	343 (35)	540 (55)	16	20	29,4 (3,0)

Отливки из углеродистой и легированной стали (по ОСТ 108.961.03–79)

Марка стали	Предел теку- чести, σ _{0,2} , МПа (кгс/мм ²)	Временное сопротивле- ние, σ _в , МПа (кгс/мм ²)	Относитель- ное удлине- ние, δ₅, %	Относитель- ное сужение, %	Ударная вязкость, <i>КСU</i> , кДж/м² (кгс · м/см²)	Твердость по Бринел- лю, НВ
		-	не менее		-	
25Л	240 (24)	450 (45)	19	30	393 (4,0)	_
20ГСЛ	280 (28)	500 (50)	18	30	294 (3,0)	-
20ХМЛ	250 (25)	470 (47)	18	30	294 (3,0)	135–180
20ХМФЛ	320 – 550 (32–55)	500 (50)	15	30	294 (3,0)	159–223
15Х1М1ФЛ	320 – 550 (32–55)	500 (50)	15	30	294 (3,0)	159–223

ОБЛАСТЬ ПРИМЕНЕНИЯ ЛИСТОВОЙ СТАЛИ ДЛЯ ИЗГОТОВЛЕНИЯ ФАСОННЫХ ДЕТАЛЕЙ ТРУБОПРОВОДОВ

(извлечение из ОСТ 34 10.747–97 «Детали и сборочные единицы трубопроводов ТЭС на $P_{\rm pa6}$ < 2,2 МПа (22 кгс/см²), t≤425 °C. Трубы и прокат. Сортамент»)

Марка стали, НТД на сталь	НТД на лист	Кате- гория про- ката	S, MM	Мини- маль- ная рас- четная темпе-	Мак маль рабо	ные
				ратура наруж- ного возду- ха, °С	тем- пера- тура, °C	дав- ле- ние, МПа
Ст3пс4, Ст3сп5, ГОСТ 380	FOCT 14637	_	≤ 12		200	1,6
20, FOCT 1050	ГОСТ 1577	3		-20	300	
20К, ГОСТ 5520	FOCT 5520	11				
17ГС,	ГОСТ 19281,	11			350	
17Г1С, ГОСТ 19281	FOCT 5520	12	11	-40		
16ГС, ГОСТ 19281	ГОСТ 19281, ГОСТ 5520	11	Не ог- рани- чена	-20		2,5
		12	Tona	-40		
09Г2 С ,	ΓΟCT 19281,	11		20	425	
10Г2С1,	FOCT 5520	12		-40		
ГОСТ 19281		14		-60		

Примечание. Листы должны поставляться термообработанными.

СОДЕРЖАНИЕ РАЗДЕЛА «СВАРОЧНЫЕ РАБОТЫ И РАБОТЫ ПО КОНТРОЛЮ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ» ПРОЕКТА ПРОИЗВОДСТВА ТЕПЛОМОНТАЖНЫХ РАБОТ

В проекте производства работ по монтажу (ремонту*) трубных систем котлов и трубопроводов должны содержаться следующие данные по сварке, термической обработке и контролю:

- а) требования к организации работ по сварке, термической обработке и контролю качества сварных соединений, включая инженерную подготовку производства работ; структура служб сварки и контроля;
- б) состав и квалификация сварщиков, операторов-термистов, контролеров и специалистов сварочного производства в соответствии с ПБ 03-273—99;
- в) ведомость физических объемов работ по сварке, термической обработке и контролю качества, включая сводную таблицу характеристик сварных соединений трубных систем котлов и трубопроводов;
- г) сварочные формуляры (или схемы) трубопроводов и трубных систем котлов; ведомость потребности в сварочных материалах (электроды, сварочная проволока, газы для сварки и резки), материалах для термообработки и контроля качества:
- д) ведомость оборудования для сварки, термической обработки и контроля;

^{*} Проект производства работ при ремонте энергетического оборудования составляется в случае выполнения значительного объема работ на одном объекте, например: замена элементов котла (пароперегревателя, водяного экономайзера, коллекторов, пучков змеевиков), замена гибов, арматуры, отдельных участков трубопроводов и т. п., что связано с серьезными такелажными работами. В остальных случаях ремонта с помощью сварки можно ограничиться разработкой технологии сборочно-сварочных работ или ссылкой на действующий ПТД.

- e) ведомость вспомогательных материалов, инструментов и приспособлений;
- ж) схема энергоснабжения постов сварки и термической обработки (на стадии рабочих чертежей);
- з) экспликация помещений службы сварки и контроля, в том числе для складирования и подготовки сварочных материалов, наладки и ремонта оборудования, подготовки и аттестации персонала, хранения и перезарядки ампул с радиоактивными изотопами, обработки радиографической пленки и т. п.;
- и) технологические указания по сварке, термообработке и контролю (технологические карты, инструкции и пр.), если имеющиеся НТД, в том числе РД 153-34.1-003-01, не содержат нужных сведений для выполнения работ на конкретном объекте;
- к) требования безопасности и промышленной санитарии при производстве сварочных работ, работ по термообработке и контролю качества.

РЕКОМЕНДУЕМЫЕ СТРУКТУРЫ СЛУЖБ СВАРКИ И КОНТРОЛЯ МОНТАЖНОГО И РЕМОНТНОГО УЧАСТКОВ

- 1. Структура служб сварки и контроля монтажного участка (управления)
- 1. На участке монтажа оборудования электростанции создается единый цех сварки во главе с начальником цеха или старшим прорабом. Начальник цеха (старший прораб) подчиняется главному инженеру монтажного участка (управления), а в техническом и методическом отношении главному сварщику и начальнику центральной лаборатории сварки треста. В цех сварки входят подразделения, выделенные по технологическому признаку, характеру или месту выполнения работ (сварка котла на сборочной площадке, сварка котла в котельной, сварочные работы в машинном зале, сварка трубопроводов и т. п.). В цех сварки входит также группа термообработки сварных соединений. При монтаже блоков мощностью 300 МВт и более целесообразно иметь в цехе заместителя начальника (старшего прораба или прораба).
- 2. Численность специалистов по сварке, термообработке и контролю следует определять из расчета, чтобы на одного специалиста приходилось 12–16 рабочих соответствующей специальности. Примерная численность ИТР цеха сварки в зависимости от объема и сложности оборудования составляет при монтаже (человек):

Котлов паропроизводительностью по 200 т/ч	1–3
Энергоблоков мощностью, МВт:	
50–150	6–8
200–300	8–12
500-800	14–18
1200	18-20

3. Группу термообработки возглавляет прораб или мастер. В нее входят операторы-термисты 2–5-го разрядов, слесари-электромонтажники 3–5-го разрядов и электрослесари 5–6-го разрядов. Рекомендуемый численный состав группы термообработки приведен в табл. П6.1.

Помимо работников, перечисленных в табл. П6.1, в группу термообработки следует включать электрослесарей 5—6-го разрядов по наладке оборудования для термообработки, наладке разводок для сварки и термообработки из расчета 1—2 человека при монтаже энергоблоков мощностью не более 300 МВт и 2—3 человека при мощности блока 500 МВт и более.

- 4. Группа контроля качества сварных соединений неразрушающими методами (в том числе стилоскопированием) подчиняется главному инженеру монтажного участка (управления), ее возглавляет прораб или мастер со специальным техническим образованием. При определении численного состава группы можно руководствоваться рекомендациями табл. П6.1.
- 5. При наличии 10 операторов и более по механизированной сварке целесообразно назначить мастера, которому подчиняются сварщики и наладчики, обслуживающие автоматы и полуавтоматы. Число наладчиков назначается из расчета один наладчик на шесть постов механизированной сварки, при этом в каждой смене, в которой работают посты, должен быть наладчик.
- 6. В монтажных управлениях (участках), монтирующих энергоблоки мощностью 200 МВт и более, целесообразно организовать цех сварки на правах линейного цеха (по типу турбинного и котельного), в состав которого входят все сварщики, рабочие группы термообработки и дефектоскопии, электрики и электрослесари, обслуживающие сварочное и дефектоскопическое оборудование и осуществляющие профилактический ремонт, вспомогательные рабочие по подготовке и хранению сварочных материалов и инструмента.

Численный состав групп термообработки и контроля монтажного участка

Монтируемое оборудование		Гру термооб	Группа контроля				
	Общая чис- ленность персонала	Операторы- термисты 2– 5-го разря- дов	Слесари- электромон- тажники 3–5-го разрядов	Электро- слесари 5, 6-го разрядов	Общая чис- ленность персонала	Конт- ролеры	Слесари 2, 3-го разря- дов
Котлы паро- производи- тельностью не более 220 т/ч	5–8	1–2	3–4	1–2	5–7	3–4	2–3
Энергоблоки мощностью, МВт: 50150 200300 500800 1200	12–15 16–21 22–28 25–30	2-4 4-6 7-9 7-9	5–7 9–11 11–13 12–14	2–3 3–4 3–6 6–7	7–10 11–16 17–24 25–30	4–6 8–10 12–15 15–18	3–4 3–6 5–9 10–12

2. Структура служб сварки и контроля ремонтного участка

- 1. Для технического и методического руководства производством сварочных работ и подготовки кадров в энергоремонтных предприятиях численностью сварщиков 150 и более целесообразно организовать службы главного сварщика, при меньшей численности лаборатории сварки и контроля.
- 2. В службу главного сварщика (лабораторию сварки и контроля) входят отдельные подразделения, выделенные по технологическому признаку, во главе с руководителями. При возложении на лабораторию сварки и контроля функций регионального учебного и аттестационного пункта либо других специальных функций лаборатория подчиняется непосредственно главному инженеру предприятия.
- 3. Главный сварщик (начальник лаборатории) непосредственно подчиняется главному инженеру предприятия. Все ИТР предприятия специалисты по сварке, термообработке и контролю находятся в техническом и методическом подчинении главного сварщика предприятия и начальника лаборатории.
- 4. Мастеру по сварке руководителю сварочных работ на участке (объекте) подчинены в техническом отношении все сварщики и термисты. Численность мастеров по сварке определяется из расчета один мастер на 12–15 рабочих соответствующей специальности (сварщиков, термистов, электриков, подсобных рабочих).
- Мастер по сварке оперативно взаимодействует с мастером по контролю. Численность ИТР по неразрушающим методам контроля следует определять из расчета один мастер на 5 контролеров.
- 6. Структура и численный состав службы сварки и контроля определяются объемами и сложностью выполняемых работ.

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА ОТЕЧЕСТВЕННЫХ ЭЛЕКТРОДОВ

Таблица П7.1

Химический состав металла, наплавленного электродами для сварки углеродистых и низколегированных конструкционных сталей, % (по данным стандартов и технических условий)

Тип и марка электрода	Углерод	Кремний	Марганец	Фос- фор	Сера
				не бо	лее
Э42:					
АНО-6М	0,08–0,12	0,08-0,18	0,50-0,80	0,045	0,040
Э42A:					
УОНИ-13/45	0,08-0,12	0,180,30	0,55-0,70	0,035	0,030
ЦУ-6	0,05–0,12	0,200,45	0,45–0,85	0,035	0,030
Э46:					
MP-3	0,08–0,12	0,10-0,20	0,38-0,50	0,045	0,040
MP-3P	0,07–0,11	0,09-0,13	0,500,70	0,045	0,040
MP-6	0,08-0,11	0,08-0,15	0,40-0,70	0,043	0,028
O3C-4	0,08-0,12	0,15-0,30	0,45-0,60	0,045	0,040
O3C-6	0,08-0,12	0,08-0,25	0,40-0,70	0,045	0,040
O3C-12	До 0,10	0,10-0,20	0,40-0,70	0,035	0,030
Ротекс-ОЗС-12	0,07-0,10	0,12-0,20	0,50–0,70	0,040	0,035
AHO-4	До 0,10	До 0,18	0,60-0,80	0,040	0,040
AHO-18	До 0,10	0,120,20	0,60-0,90	0,040	0,040
AHO-24	0,07–0,11	0,10-0,17	0,50–0,80	0,040	0,040

Тип и марка электрода	Углерод	Кремний	Марганец	Фос- фор	Сера
				не бо	лее
Э46A:					
ТМУ-46	0,07~0,12	0,20-0,45	0,60-0,90	0,035	0,030
Э 50:					
ВСЦ-4А	До 0,12	До 0,20	0,50-0,80	0,045	0,040
Э50A:					
ЦУ-5	0,06-0,12	0,20-0,50	1,00–1,60	0,035	0,030
УОНИ-13/55	0,08-0,12	0,18-0,40	0,80–1,00	0,030	0,030
УОНИ-13/55С	До 0,14	0,20-0,50	0,80–1,20	0,035	0,030
ТМУ-21У	0,07~0,12	0,20-0,43	0,70-1,00	0,035	0,030
ЦУ-7	0,05-0,12	0,17-0,40	0,90–1,40	0,035	0,030
итс-4С	До 0,11	0,15-0,35	0,80–1,20	0,030	0,030
Пλ-8	0,07-0,14	0,30-0,60	1,00–1,60	0,035	0,030
ТМУ-50	0,07-0,12	0,20-0,45	0,75–1,00	0,035	0,030
AHO-11	0,06~0,10	0,20-0,60	0,80-1,20	0,035	0,030
				сера + фосфор	
МТГ-01К	0,04-0,08	0,25-0,50	1,20–1,45	< 0,035	
МТГ-02	0,04–0,08	0,30-0,55	1,20–1,55	≤ 0,0	35

Примечание. В таблице приведены справочные значения содержания углерода, кремния и марганца в наплавленном металле. Основным критерием соответствия электродов требованиям ГОСТ являются механические свойства и содержание серы и фосфора, которые регламентированы ГОСТ 9467 (S ≤ 0,04%; $P \le 0,045\%$ для электродов типов Э42, Э46 и Э50 и S ≤ 0,03%; $P \le 0,035\%$ для электродов типов Э42A, Э46A и Э50A).

Химический состав металла, наплавленного

Тип электродов	Марка	лектрода	Углерод	Кремний
по ГОСТ 9467 или ГОСТ 10052	соответ- ствует соответст- вует		:	
	данно	му типу		
Э-09X1M	ТМЛ-1У, ЦУ-2ХМ		0,06– 0,12	0,15 <u>-</u> 0,40
		ЦЛ-38	0,06– 0,12	0,20- 0,45
Э-09Х1МФ	ЦЛ-39 ЦЛ-20		0,06- 0,12 0,06- 0,12	0,20- 0,40 0,18- 0,40
		цл-20М	0,06 <u>–</u> 0,12	0,18– 0,40
	ТМЛ-ЗУ		0,08- 0,12	0,15 <u>–</u> 0,40
		ЦЛ-45	0,06- 0,12	0,15– 0,35
10Х9М1Ф* ⁶		ЦЛ-57	0,06– 0,14	0,20- 0,60
Э-08X16H8M2		ЦТ-26 ЦТ-26М	До 0,08 До 0,05	0,30- 0,75 0,30- 0,75
Э-08Х19Н10Г2Б	ЦТ-15* ¹	ЦТ-15К* ²	0,05- 0,12 До 0,06	0,15– 0,70 0,20– 0,80
Э-08Х20Н9Г2Б	ЦТ-15-1* ¹		0,05- 0,12	0,15 0,70
Э-07Х19Н11М3Г2Ф		ЭА-400/10У, ЭА-400/10Т	До 0,10	До 0,60

электродами для сварки легированных сталей, %

Марга- нец	Хром	Никель	Молиб- ден	Вана- дий	Cepa	Фос- фор
					не бо	лее
0,5-0,9	0,8–1,2	-	0,4-0,7	_	0,025	0,035
0,50,9	0,7-1,0	_	0,4-0,7	-	0,030	0,035
0,6–0,9	0,80–1,25	-	0,4-0,7	0,12-0,30	0,025	0,030
0,6–0,9	0,80–1,25	-	0,4-0,7	0,12-0,30	0,025	0,030
0,6–1,0	0,85–1,30	-	0,40-0,75	0,15-0,35	0,025	0,030
0,5-0,9	0,80–1,25	_	0,4-0,7	0,15-0,30	0,025	0,030
0,6–0,9	0,8–1,2	_	0,65-0,95	0,08-0,18	0,030	0,035
0,3-0,8	8,5–10,5	-	0,9-1,2	0,10-0,20	0,025	0,030
1,2-2,3	16,5–18,5	7,5–10,0	1,5–2,3	-	0,020	0,025
1,2–2,3	16,5–18,5	7,5–10,0	1,5–2,3	-	0,020	0,025
1,0–2,5	18,0–20,5	8,5–10,5	-		0,020	0,030
1,5–2,2	17,5–20,5	8,5–10,5	-	-	0,020	0,030
1,2-2,2	19,0–22,0	8,0–10,5	-	-	0,020	0,030
1,1–3,1	16,8–19,0	9,0–12,0	2,0-3,5	0,30-0,75	0,025	0,030

Тип электродов	Марка з	лектрода	Углерод	Кремний
по ГОСТ 9467 или ГОСТ 10052	соот- ветствует	условно соответст- вует		
}	данно	му типу		
Э-10X25H13Г2	ОЗЛ-6 ЗИО-8		До 0,10 До 0,12	0,30- 0,80 До 1,0
		ЦЛ-25/1, ЦЛ-25/2	До 0,12	До 1,0
Э-10Х25Н13Г2Б	ЦЛ-9* ¹		До 0,12	0,40- 1,20
Э-11Х15Н25М6АГ2	НИАТ-5* ³		0,08~ 0,12	0,30- 0,70
	ЦТ-10* ³		0,08- 0,14	0,30- 0,70
		ЭА-395/9* ⁴	0,08~ 0,12	0,35 0,70
03X20H45M6Г6Б2* ⁶		ЦТ-45* ⁵	До 0,04	До 0,65

^{*}¹ Содержит 0,7— 1,3% ниобия, но ≥ 8 • C, %.

Примечания к табл. П7.2.

1. Химический состав наплавленного металла приведен из следующих стандартов и ТУ:

Марка электрода	Стандарт, ТУ
ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ЦЛ-20, ЦЛ-20М, ЦЛ-45, ЦЛ-57, ЦТ-26, ЦТ-26М, ЦТ-15, ЦТ-15-1, ЦТ-15К, ЦЛ-25/1, ЦЛ-25/2, ЦТ-10, ЦТ-45	OCT 24.948.01–90

^{*2} Содержит 0,8-1,1% ниобия.

^{*3} Содержит до 0,2% азота.

^{*4} Содержит 0,08-0,20% азота.

^{*5} Содержит 1,6-2,2% ниобия.

^{*6} Тип металла шва.

Продолжение приложения 7 Окончание табл. П7.2

Марга- нец	Хром	Никель	Молиб- ден	Вана- дий	Сера	Фос- фор
					не бо	лее
1,5–2,5	24,0-27,0	12,5–13,5	_	-	0,020	0,030
1,0–2,7	23,0–27,0	11,5–14,0		-	0,020	0,030
1,0–2,5	23,0-27,0	11,5–14,0	-	_	0,020	0,030
1,2–2,5	21,5–26,5	11,5–14,0	-	_	0,020	0,030
1,0-2,0	14,5–17,0	23,5–26,5	4,5–7,0	1	0,020	0,030
1,5–2,3	13,5–17,0	23,0–27,0	5,0-7,0	_	0,020	0,030
1,2-2,8	13,5–17,0	23,0-27,0	4,5–7,0		0,018	0,030
5,0-7,0	18,5–22,0	43,0–48,0	5,5–7,5	_	0,020	0,020

Марка электрода	Стандарт, ТУ
ТМЛ-1У	ТУ 34 10.10169-90
ТМЛ-ЗУ	ТУ 34 10.10174–90
ЭА-400/10У, ЭА-400/10Т	OCT 5.9244-87, OCT 5P.9370-81
ЭA-395/9	OCT 5.9244-87, OCT B 5P.9374-81
ЦЛ-9, ОЗЛ-6, ЗИО-8, HИAT-5	FOCT 10052-75

^{2.} Электроды марок ЦЛ-38 и ЦЛ-39 выпускаются только диаметром 2,5 мм, ЦТ-15-1 — 3,0 мм.

Механические свойства наплавленного металла электродов при комнатной температуре

Марка электрода	Режим термообра- ботки	Временное сопротивление разрыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, <i>КСU</i> , Дж/см ² (кгс. -м/см ²)
AHO-6M	Без термо-	410 (42)	18	80 (8)
Ano-ow	обработки	410 (42)	10	00 (0)
УОНИ-13/45	'	410 (42)	22	150 (15)
ЦУ-6		410 (42)	24	157 (16)
MP-3, MP-3P,		450 (46)	18	80 (8)
MP-6, O3C-4,				
O3C-6, AHO-4,				
AHO-18, AHO-24,				
Ротекс-ОЗС-12				
O3C-12	Без термо-	470 (48)	20	100 (10)
ТМУ-46	обработки	460 (47)	24	
ВСЦ-4А		490 (50)	16	70 (7)
УОНИ-13/55, АНО-11, ТМУ-21У, ИТС-4С		490 (50)	20	127 (13)
ЦУ-5, ЦУ-7		490 (50)	20	137 (14)
ТМУ-50		490 (50)	22	-
УОНИ-13/55С		510 (52)	20	127 (13)

Марка электрода	Режим термообра- ботки	Времен- ное сопро- тивление разрыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, <i>КСU</i> , Дж/см² (кгс. ⋅м/см²)
			не менее	407 (4.4)
ЦУ-8 МТГ-01К		510 (52) 510–590 (52–60)	20 26	137 (14) 120 (12)*
MTΓ-02		515–595 (52,5–61,0)	26	120 (12)*
ЦУ-2ХМ, ЦЛ-38	Отпуск 710+15 °C, 4,0±0,5 ч	470 (48)	18	88 (9)
ТМЛ-1У	Отпуск 735±15 °C, 1,0±0,5 ч			
ЦЛ-20, ЦЛ-20М, ЦЛ - 39	Отпуск 735±15 °C, 5,0±0,5 ч	490 (50)	16	78 (8)
тмл-зу	Отпуск 735±15 °C, 1,0±0,5 ч			
ЦЛ-45	Отпуск 735±15°C, 5,0±0,5 ч	490 (50)	18	88 (9)
ЦЛ-57	Отпуск 760±10 °C, 10 ч	539 (55)	18	49 (5)*
ЦТ-26, ЦТ-26М	Без термо- обработки	539 (55)	30	98 (10)

Марка электрода	Режим термообра- ботки	Времен- ное сопро- тивление разрыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, <i>КСU</i> , Дж/см ² (кгс. -м/см ²)	
			не менее		
ЦТ-15-1	Без термо-	588 (60)	22	78 (8)	
ЦТ-15	обработки	540 (55)	24	78 (8)	
ЦТ-15К		588 (60)	25	49 (5)	
ЭА-400/10У, ЭА-400/10Т		540 (55)	25	90 (9)	
03Л-6, ЗИО-8		540 (55)	25	90 (9)	
ЦЛ-25/1		539 (55)	25	49 (5)	
ЦЛ-25/2		539 (55)	25	88 (9)	
цл-9			590 (60)	25	70 (7)
НИАТ-5		590 (60)	30	100 (10)	
ЦТ-10		608 (62)	30	118 (12)	
ЭA-395/9		610 (62)	30	120 (12)	
ЦТ-45		588 (60)	40	88 (9)	

^{*} При испытании на образцах типа IX по ГОСТ 6996 при +20 °C.

Примечание. Значение *КСV* при -20 °C для электродов: МТГ-01К $- \ge 60$ (6) Дж/см² (кгс • м/см²);

МТГ-02 – ≥ 45 (4,5) Дж/см 2 (кгс • м/см 2).

35

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА ЗАРУБЕЖНЫХ ЭЛЕКТРОДОВ (ПО ДАННЫМ КАТАЛОГОВ)

Таблица П8.1 Химический состав наплавленного металла, % (средние значения)

Марка электрода*	Страна	Соответствие типу по ГОСТ 9467 или ГОСТ 10052 либо тип металла шва	Угле- род	Крем- ний	Марга- нец	Хром	Молиб- ден	Другие элементы
B-17	Япония	942A	0,08	0,08	0,49	_	_	_
E-B121	Чехия		0;10	0,20	0,70	-	_	_
Emona	Югославия	Э46	0,10	0,12	0,45	-	_	-
E-B125	Чехия		0,10	0,50	1,30	-	_	-
LB-26	Япония		0,08	0,43	0,93	-	-	_
LB-52U			0,08	0,64	0,86	-	_	-
LB-52A		Э 50A	0,08	0,50	1,08	-	-]	_

Марка электрода*	Страна	Соответствие типу по ГОСТ 9467 или ГОСТ 10052 либо тип металла шва	Угле- род	Крем- ний	Марга- нец	Хром	Молиб- ден	Другие элементы
OK 48.00	Швеция		0,07	0,50	1,20	1	-	_
OK 48.04**			0,06	0,50	1,20	-	-	_
OK 48.30			0,08	0,50	1,00	-		_
Garant	Германия	950A	0,10	0,50	1,00	1	_	-
Fox EV 50 Fox EV 55	Австрия		0,05 0,08	0,60 0,35	0,90 1,40	1 1	1 1	_ _
Phoenix K 50 R Phoenix K 120 K	Германия		0,06 0,07	0,55 0,40	0,95 1,10	1	-	-
Z-4	Израиль		0,10	0,40	1,20	-	-	_
Fox DMo Kb	Австрия	Э-09M	0,07	0,40	0,80	-	0,50	_
CMB-86	Япония	Э-09MX	0,07	0,51	0,81	0,51	0,47	
SL 19G	США		0,06	0,40	0,80	1,10	0,50	_

354

	СМВ-95 СМВ-96	Япония		0,03	0,90 0,53	0,76 0,79	1,27 1,20	0,54 0,50	-
	OK 76.18	Швеция	Э-09X1M	0,06	0,30	0,79	1,20	0,50	_
	Cromo 335 Kb	Германия		0,07	0,30	0,70	1,10	0,50	_
	Fox DCMS Kb	Австрия		0,07	0,40	0,70	1,10	0,50	_
	Fox DCMV	Австрия	09Х1М1Ф	0,13	0,35	0,90	1,35	1,00	Ванадий – 0,25
63	E-B321 (E CrMoV-14B)	Чехия	09ХМФ	0,06- 0,12	≥ 0,45	0,40- 0,90	0,50 <u>-</u> 0,80	0,40- 0,60	Ванадий – 0,20-0,40
355	E-B324		09ХМ1Ф	0,10	0,40	1,40	0,50	1,20	Ванадий – 0,30
	Super CrMoV3	Германия	09Х1М1Ф	0,06	0,50	1,00	1,10	1,00	Ванадий – 0,20
	Super CrMoV3/c		:	0,11	0,30	0,90	1,10	1,00	Ванадий – 0,20
	Arosta 316 L	США	03X18H12M3	0,025	0,80	0,80	18,0	2,70	Никель 11,5
	Fox EAS 4M	Австрия	03X19H12M3	< 0,04	0,40	1,30	18,8	2,70	Никель – 11.5

Марка электрода*	Страна	Соответствие типу по ГОСТ 9467 или ГОСТ 10052 либо тип металла шва	Угле- род	Крем- ний	Марга- нец	Хром	Молиб- ден	Другие элементы
Arosta 304 L	США	03X20H10	0,025	0,80	1,00	20,0	_	Никель – 10,0
Z-309 S	Израиль	03X23H12	0,025	0,80	1,00	24,0	-	Никель – 12,5
Fox CN23/12 Mo-A	Австрия	02X23H12M3	0,02	0,70	0,80	23,0	2,70	Никель – 12,5
Z-310	Израиль	13X25H20Г2	0,13	0,40	2,10	25,0	_	Никель — 20,0
Fox CN 20/25M	Австрия	02X20H25Г2M7	≤ 0,04	0,40	2,10	20,0	6,50	Никель – 25,0, медь – 1,40, азот

- * Содержание серы и фосфора в наплавленном металле всех электродов перлитного класса не более 0,03% каждого; высоколегированных серы не более 0,02%, фосфора не более 0,03%.
- ** Электроды ОК 48.04 по лицензии ЭСАБ производит Тюменский завод сварочных электродов «Sibes» (г. Тюмень), наплавленный металл которых содержит: C = 0.02 0.10%, Si = 0.30 0.70%, Mn = 0.95 1.35%.

Примечания.

- 1. В графе 3 дана привязка зарубежных электродов к отечественным типам согласно ГОСТ9467 или ГОСТ 10052. Если перед обозначением типа электрода стоит буква «Э», то это значит, что химический состав наплавленного металла электродов данной марки соответствует приведенному типу отечественных электродов. Если же в буквенно-цифровом обозначении отсутствует буква «Э», то это говорит о том, что наплавленный металл не может быть отнесен к определенному типу электродов по ГОСТ 9467 или ГОСТ 10052, хотя по буквенно-цифровому написанию можно определить примерный химический состав наплавленного металла.
- 2. При необходимости проведения химического анализа наплавленного металла зарубежных электродов пределы содержания отдельных элементов следует сравнивать с цифрами, приведенными в табл. П7.1 и П7.2 для аналогичных типов отечественных электродов. Одним из браковочных признаков является содержание углерода более 0,13%.
- 3. При некотором несоответствии химического состава наплавленного металла сертификатным или данным каталога основным критерием возможности использования этих электродов для сварки конкретных изделий являются механические свойства (см. табл. П8.2).

Механические свойства наплавленного металла

Марка электрода	Режим термооб- работки	Времен- ное со- против- ление раз- рыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, <i>КСU,</i> (кгс·м/см²) при 20 °C
B-17	Без термо- обработки	440 (45)	33	124 (13)* ¹
E-B121	То же	440–540 (45–55)	≥ 22	≥ 130 (13)* ³
Emona	» »	450–550 (46–55)	24–30	87,5–125,0 (8,8–12,5)
E-B125	» »	520–620 (53–63)	≥ 22	≥ 130(13)* ³
LB-26 LB-52U LB-52A	» » » » » »	540 (55) 550 (56) 590 (60)	33 31 30	240 (24)* ¹ 135 (14)* ¹ 135 (14)* ¹
OK 48.00 OK 48.04 OK 48.30	» » » » » »	540 (55) 560 (57) 550 (56)	29 30 30	175 (18)* ² 187,5 (19)* ² 250 (25,5)
Garant	»»	500–550 (51,0–56,5)	22	147–177 (15–18)
Fox EV 50 Fox EV 55	» » » »	510–615 (52–63) 530–650 (54–66)	25 25–30	150–275 (15–28) ≥ 162 (16,6)
Phoenix K 50 R Phoenix 120 K	» » » »	≥ 510 ≥ 510	25–35 25–35	150–200 (15–20) 150–225 (15–23)
Z-4	» »	530–590 (54–60)	25	

Марка электрода	Режим термооб- работки	Времен- ное со- против- ление раз- рыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, <i>КСU</i> , (кгс-м/см ²) при 20 °C
Fox DMo Kb	Без термооб- работки	560–710 (57–72)	> 22	> 150 (15)
CMB-86	Отпуск при 620 °C, 1 ч	677 (69)	26	_
SL 19G	Отпуск при 620 °C, 1 ч	≥ 550 (56)	≥ 19	100 (10)
CMB-95 CMB-96	Отпуск при 690°С, 1 ч Отпуск при 690°С, 1 ч	607 (62) 654 (67)	28 25	1
OK 76.18	Отпуск при 700°C, 2 ч	620 (63)	20	150 (15)
Cromo 335 Kb	Отпуск при 680 °C, 2 ч	610–710 (62–72)	22–28	140–200 (14–20)
Fox DCMS Kb	Отпуск при 680°C, 2 ч	590–740 (60,0–75,5)	> 22	> 125 (13)
Fox DCMV	Отпуск при 680 °C, 8 ч	≥ 590 (60)	> 15	> 59 (6,0)
E-B321 (E CrMoV-14B)	Отпуск при 680– 730°C, 2 ч	500–750 (51,0– 76,5)	≥ 14	≥ 60 (6,0)* ³
E-B324	Отпуск при 660–680°C 2 ч	650–800 (66–82)	≥ 16	≥ 50 (5)* ³
Super CrMoV3	Отпуск при 720°С, 2 ч и далее при 700°С, 8 ч	680–780 (69–80)	20–25	80–120 (8–12)

Марка электрода	Режим термооб- работки	Времен- ное со- против- ление раз- рыву, МПа (кгс/мм²)		Ударная вязкость, <i>КСU,</i> (кгс-м/см²) при 20°C
Super CrMoV3/c	Отпуск при 720°C, 2ч	720–820 (73,5– 84,0)	18–24	70–120 (7–12)
Arosta 316 L	Без термо- обработки	≥ 490 (50)	≥ 30	87,5 (9,0)* ⁴
Fox EAS 4M	То же	540–690 (55–70)	> 35	> 59 (6,0)
Arosta 304 L	»»	≥ 520 (53)	≥ 35	87,5 (9,0)* ⁴
Z-309 S	»»	600(61)	35	_
Fox CN23/12 Mo-A	» »	670–810 (68–83)	≥ 25	≥ 59 (6,0)
Z-310	» »	580 (59)	30	100 (10)* ⁴
Fox CN 20/25M	» »	600–700 (61–71)	≥ 30	≥ 59 (6,0)

^{*1} Данные испытаний при температуре 0 °C.

Примечание. В таблице приведены либо предельные (минимальные и максимальные) значения показателей механических свойств, либо минимальные (со знаком >, ≥) или средние (без какого-либо знака) их значения по данным каталогов.

^{*2} Данные испытаний при температуре -20 °C.

^{*3} Образцы с U-образным надрезом.

 $^{^{*4}}$ Значения ударной вязкости не нормируются, приведены типичные значения.

ХАРАКТЕРИСТИКА СВАРОЧНОЙ ПРОВОЛОКИ

Таблица П9.1

Химический состав, %, сварочной проволоки сплошного сечения (ГОСТ 2246)

Марка проволоки	Углерод	Марга-	Кремний	Хром	Никель	Молиб-	Cepa	Фосфор
		нец				ден	не более	
Св-08	≤0,10	0,35 <u>-</u> 0,60	≤0,03	≤0,15	≤0,30	-	0,040	0,040
Св-08А	≤0,10	0,35 - 0,60	≤0,03	≤0,12	≤ 0,25	-	0,030	0,030
Св-08АА	≤0,10	0,35 - 0,60	≤0,03	≤0,10	≤ 0,25	-	0,020	0,020
Св-08ГА	≤0,10	0,8-1,1	≤0,06	≤0,10	≤0,25	_	0,025	0,030
СВ-08ГА-2* ¹	≤0,09	0,7–1,0	0,25- 0,40	≤0,10	≤0,25	-	0,025	0,025
Св-10ГА	≤0,12	1,1-1,4	≤0,06	-≤0,20	≤ 0,30	-	0,025	0,030
Св-08ГС	≲0,10	1,4–1,7	0,60- 0,85	≤0,20	≤0,25	-	0,025	0,030

	Св-08ХМФА-2* ⁵	0,05–0,09	0,65 - 0,90	0,25- 0,40	0,9–1,2	≤0,30	0,5–0,7	0,025	0,025
	СВ-08ХГСМА	0,06–0,10	1,15 1,45	0,45 - 0,70	0,85 – 1,15	≤ 0,30	0,4–0,6	0,025	0,025
	Св-08ХГСМФА* ⁶	0,06–0,10	1,2–1,5	0,45– 0,70	0,95 <u>–</u> 1,25	≤ 0,30	0,5–0,7	0,025	0,025
	СВ-10Х9НМФА* ⁷	0,08–0,14	0,4–0,7	0,25 – 0,40	8,5–9,6	0,5–0,7	0,8–1,0	0,020	0,025
	СВ-10Х9ГСНМФ* ⁷	0,08-0,12	1,2–1,8	1,0-1,4	8,5–9,6	0,8–1,2	0,8–1,0	0,020	0,025
3	СВ-12Х11НМФ* ⁸	0,08–0,15	0,35 - - 0,65	0,25 – 0,55	10,5 - 12,0	0,6-0,9	0,6–0,9	0,025	0,030
•	Св-10Х11НВМФ* ⁹	0,08–0,13	0,35 – 0,65	0,3–0,6	10,5 12,0	0,8–1,1	1,0–1,3	0,025	0,030
	Св-01Х19Н9	≤0,03	1,0–2,0	0,5–1,0	18,0 – 20,0	8,0–10,0	-	0,015	0,025
	Св-04Х19Н9	≤0,06	1,0–2,0	0,5–1,0	18,0 <u>–</u> 20,0	8,0–10,0	-	0,018	0,025
	Св-06X19H9T* ¹⁰	≤0,08	1,0–2,0	0,4–1,0	18,0– 20,0	8,0-10,0	-	0,015	0,030
	Св-04Х19Н1М3	≤0,06	1,0–2,0	≤0,60	18,0– 20,0	10,0- 12,0	2,0–3,0	0,018	0,025

- *1 Содержит не более 0.02% титана и не более 0.03% алюминия.
- *2 Содержит титана 0.05 -0.12%.
- *3 Содержит алюминия 0.05%.
- *5 Содержит ванадия 0.15-0.30%, алюминия 0.05%.
- *6 Содержит ванадия 0.2-0.35%.
- ∗7 Содержит ванадия 0,14-0,22%; содержание титана, алюминия, меди и азота должно соответствовать ГОСТ 2246.
- *8 Содержит 0.25--0.5% ваналия. *9 Содержит 0,25 -0,50% ванадия и 1,0-1,4% вольфрама.
- *10 Содержит титана 0.50-1.0%.
- *11 Содержит ниобия 0.9~1.3%.
- *12 Содержит азота 0.10-0.20%.

Примечания.

- Проволока марок Св-08ГА-2, Св-08ХМА-2 и Св-08ХМФА-2 изготавливается по ТУ 14-1-4369--87, марок Св-10Х9НМФА и Св-10Х9ГСНМФ - по ТУ 14-130-275-95 с изменением 1, марки Св-04Х20Н10Г2Б (ЭП 762) - по ТУ 14-1-4591-89, марки Св-03Х20Н45Г6М6Б-ВИ (ЭП953-ВИ) - по ТУ 14-1-4973-91.
- 2. Проволоки следующих марок могут наряду с ГОСТ 2246 также поставляться по техническим условиям: Св-08АА - ТУ 14-1-4368-87, Св-08ХМ - ТУ 14-1-953-74 (с омедненной поверхностью), Св-10Х11НВМФ -ТУ 14-1-4534-88, Св-08Х19Н10Г2Б (ЭП 898) - ТУ 14-1-3349-82, Св-04Х20Н10Г2Б (ЭП 762) - ТУ 14-1-4591-89, CB-07X25H13 - TV 3-1050-83.

Характеристика порошковой проволоки

Марка прово- локи	Диа- метр, мм		напла	ский сос вленного алла, %			Ме: Свойсте г		Технические условия	
		Углерод	Марга- нец	Крем- ний	Cepa	Фос- фор	Временное сопротив- ление раз- рыву, МПа (кгс/мм²)	Отно- ситель- ное уд- лине- ние, %	Ударная вязкость, Дж/см² (кгс- -м/см²)	
					не бо	лее	не менее			
ПП-АН1	2,8	Не более 0,10	0,6–1,0	Не более 0,15	0,030	0,040	490 (50)	16	59 (6)	ТУ 14-4-1121-81
ПП-АНЗ	3,0	Не более 0,12	0,7–1,5	0,2-0,5	0,030	0,035	490 (50)	20	132 (13,5)	ТУ 14-4-982-79

ПП-АН7	2,0-2,3	0,08-0,13	0,2–0,5	0,2–0,5	0,030	0,030	490 (50)	21	127 (13)	ТУ 14-4-1442-8
СП-2	2,35	0,08-0,13	0,7–1,0	0,1-0,3	0,040	0,040	530 (54)	24	160 (16)	ТУ 36-44-15-7-8
ПП-АН8	2,0 2,2 2,5 3,0	Не более 0,12	0,9–1,5	0,15– 0,40	0,030	0,040	490 (50)	20	127 (13)	ТУ 14-4-1059-
СП-3	2,2	0,08–0,13	0,7–1,0	0,15– 0,30	0,035	0,035	530 (54)	20	150 (15)	ТУ 36-2516-83

ТРЕБОВАНИЯ К ОДНОТИПНОСТИ СВАРНЫХ СОЕДИНЕНИЙ*

- 1. Однотипными сварными соединениями следует считать группу сварных соединений, имеющих указанные в настоящем приложении общие характеристики.
- 2. В одну группу однотипных сварных соединений могут быть объединены только сварные соединения, выполняемые одним и тем же способом сварки. К различным способам сварки, применяемым при монтаже и ремонте на объектах котлонадзора, относятся:
 - 2.1. Ручная дуговая сварка покрытыми электродами.
- 2.2. Дуговая сварка самозащитной порошковой проволокой (без защитного газа).
 - 2.3. Дуговая сварка под флюсом.
- 2.4. Дуговая сварка в углекислом газе плавящимся электродом сплошного сечения.
- 2.5. Аргонодуговая сварка вольфрамовым электродом с присадкой или без присадки.
- 2.6. Комбинированная дуговая сварка (выполнение одного сварного соединения с последовательным применением двух или нескольких способов дуговой сварки).
 - 2.7. Ацетиленокислородная (газовая) сварка.
 - 2.8. Контактная стыковая сварка оплавлением.

Примечания.

- 1. Сварку в смеси аргона с гелием (в любых пропорциях) следует рассматривать как аргонодуговую сварку.
- Сварку деталей из сталей перлитного класса в смеси аргона с углекислым газом (до 25%) или с кислородом (до 5%) допускается рассматривать как аргонодуговую сварку.

^{*} Настоящие требования отвечают Правилам изготовления паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды применением сварочных технологий (ПБ 03-164-97).

- 3. Сварку в смеси углекислого газа с аргоном (до 25%) допускается рассматривать как сварку в углекислом газе.
- 3. В одну группу однотипных сварных соединений могут быть объединены только производственные сварные соединения деталей из металла одной группы (одного сочетания групп).

Группы и сочетания групп материалов свариваемых деталей в зависимости от их типов и/или классов, а также соответствующие этим группам марки основного и присадочных материалов приведены в табл. 4.1, 4.4 и 15.1 PTM-1c.

Отнесение к конкретным группам марок основных материалов, не указанных в приведенных выше таблицах, производится по согласованию со специализированной (головной) научно-исследовательской организацией из числа указанных в соответствующих правилах Госгортехнадзора России (по специализации «сварка»).

- 4. Число групп однотипных сварных соединений, основной материал которых согласно таблицам 4.1, 4.4 и 15.1 PTM-1c относится к одной группе, определяется количеством применяемых способов сварки и указанными ниже общими технологическими характеристиками подлежащих выполнению производственных сварных соединений.
- 5. При соблюдении требований пп. 2 и 3 в одну группу однотипных сварных соединений, выполняемых дуговой сваркой (пп. 2.1–2.6), могут быть объединены производственные сварные соединения, имеющие следующие общие технологические характеристики:
- Уровень механизации процесса сварки (ручная, механизированная, автоматическая).
- 5.2. Марку (сочетание марок) сварочных материалов. При этом в одну группу допускается объединять сварные соединения деталей из материала различных марок одной группы, если РТМ-1с для сварки указанных деталей разрешается применение сварочных материалов одних и тех же марок (одной или нескольких).

Примечания.

- 1. Если НТД для ручной дуговой сварки покрытыми электродами предусмотрено применение электродов конкретных типов по ГОСТ 9467 или ГОСТ 10052 без указания их марок, то требования настоящего пункта допускается относить не к маркам, а к типам электродов.
- 2. Если НТД предусмотрено выполнение сварных соединений с предварительной наплавкой кромок и/или заваркой корневой части шва другими сварочными материалами (по сравнению с предусмотренными для заполнения основной части разделки), то требования настоящего пункта следует относить отдельно к сварочным материалам, применяемым для указанных наплавок (заварок), и к сварочным материалам, используемым для заполнения основной части разделки (в том числе при комбинированной сварке).
- 5.3. Номинальную толщину свариваемых деталей в зоне сварки. При этом в одну группу допускается объединять стыковые сварные соединения при номинальной толщине свариваемых деталей в пределах одного из следующих диапазонов:

```
до 3 мм;
свыше 3 до 12 мм;
свыше 12 до 50 мм;
свыше 50 мм.
```

Для угловых, тавровых, торцевых и нахлесточных сварных соединений указанные диапазоны относят к привариваемым (более тонкостенным) деталям; толщину основных (более толстостенных) деталей допускается не учитывать.

Для угловых, тавровых и нахлесточных сварных соединений с неполным проплавлением при расчетной высоте углового шва менее номинальной толщины привариваемой детали указанные диапазоны допускается относить к расчетной высоте угловых швов.

5.4. Номинальный диаметр деталей в зоне сварки. При этом в одну группу допускается объединять сварные соединения

деталей с номинальным диаметром в пределах одного из следующих диапазонов:

до 25 мм;

свыше 25 до 100 мм:

свыше 100 до 500 мм;

свыше 500 мм (включая плоские детали).

Любые сварные соединения с прямолинейными швами рассматриваются как сварные соединения плоских деталей.

- 5.5. Вид сварного соединения (стыковое, угловое, тавровое, торцевое, нахлесточное).
- 5.6. Вид и номинальный угол разделки кромок. При этом в одну группу допускается объединять сварные соединения с одной из следующих характеристик подготовки кромок:

без разделки кромок;

с односторонней разделкой кромок с номинальным углом разделки не более 15°;

с односторонней разделкой кромок с номинальным углом разделки свыше 15°;

с двусторонней разделкой кромок с номинальным углом разделки не более 15° с каждой стороны или с одной из сторон;

с двусторонней разделкой кромок с номинальным углом разделки свыше 15° с каждой стороны.

- 5.7. Необходимость выполнения предварительной наплавки кромок.
- 5.8. Вид покрытия применяемых электродов (только при ручной дуговой сварке покрытыми электродами). При этом в одну группу допускается объединять сварные соединения, подлежащие выполнению электродами с одним из следующих видов покрытия:
 - с основным покрытием;
 - с рутил-основным покрытием;
 - с рутиловым покрытием;
 - с кислым покрытием;
 - с прочими и специальными видами покрытия.

5.9. Условия заварки корня шва при выполнении сварных соединений с односторонней разделкой кромок. При этом в одну группу допускается объединять сварные соединения, корень шва которых подлежит заварке по одному из следующих вариантов:

без подкладок;

- с подкладками (удаляемыми или остающимися) или на флюсовой подушке.
- 5.10. Количество и вид плавящихся электродов (проволочные, ленточные) при автоматической дуговой сварке.
- 5.11. Необходимость применения активирующих флюсов (только при аргонодуговой сварке).
- 5.12. Необходимость предварительного и сопутствующего подогрева.
- 5.13. Необходимость применения импульсно-дугового процесса.
- 5.14. Необходимость и вид термической обработки (отпуск, нормализация, аустенизация и др.), а также температура выдержки и условия охлаждения при ее проведении. При этом в одну группу допускается объединять сварные соединения, подлежащие только высоким отпускам, если номинальная (средняя) температура выдержки, установленная НТД для окончательных отпусков (однократных или многократных), отличается не более чем на 20 °С (в пределах группы).
- 6. При соблюдении требований п. 3 в одну группу однотипных сварных соединений, выполняемых ацетиленокислородной сваркой, могут быть объединены производственные сварные соединения, имеющие следующие общие технологические характеристики:
 - 6.1. Необходимость применения присадочных материалов.
- 6.2. Марку присадочных материалов. При этом в одну группу допускается объединять сварные соединения деталей из материала различных марок одной группы, если РТМ-1с для

сварки указанных деталей разрешено применение сварочных материалов одних и тех же марок (одной или нескольких).

6.3. Номинальную толщину свариваемых (привариваемых) деталей. При этом в одну группу допускается объединять сварные соединения с номинальной толщиной свариваемых (привариваемых) деталей в пределах одного из следующих диапазонов:

до 3 мм;

свыше 3 до 8 мм.

6.4. Форму подготовки кромок. При этом в одну группу допускается объединять сварные соединения с одной из следующих форм подготовки кромок:

с отбортовкой;

без разделки кромок;

с разделкой кромок.

- 6.5. Тип применяемой горелки (по мощности).
- 6.6. Используемый вид пламени (нейтральное, науглероживающее, окислительное).
 - 6.7. Необходимость применения флюсов.
- 7. При соблюдении требований п. 3 в одну группу однотипных сварных соединений, выполняемых контактной стыковой сваркой оплавлением, могут быть объединены производственные сварные соединения труб, имеющие общие технологические характеристики:
- 7.1. Номинальную площадь поперечного сечения свариваемых труб. При этом в одну группу допускается объединять сварные соединения труб с номинальной площадью поперечного сечения в пределах одного из следующих диапазонов:

от 200 до 350 мм²; свыше 350 до 680 мм²;

свыше 350 до 660 мм-,

свыше 680 до 1200 мм²;

свыше 1200 до 2500 мм².

7.2. Номинальную толщину стенки свариваемых труб. При этом в одну группу допускается объединять сварные соединения труб с номинальной толщиной стенки в пределах одного из следующих диапазонов:

от 3 до 3,5 мм;

свыше 3,5 до 4,5 мм;

свыше 4.5 до 6.5 мм:

свыше 6,5 до 11 мм.

7.3. Необходимость и вид термической обработки.

ПРИМЕРЫ ПРИСПОСОБЛЕНИЙ ДЛЯ СБОРКИ СТЫКОВ ТРУБ

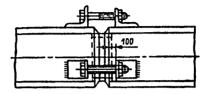


Рис. П11.1. Сборка на стяжных уголках стыков труб диаметром более 100 мм

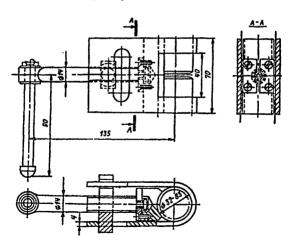


Рис. П11.2. Приспособление для центровки труб диаметром 32–83 мм (размеры даны для труб диаметром 32 мм)

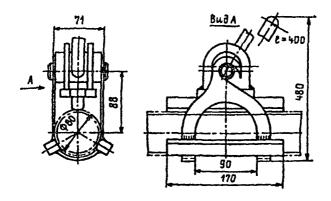
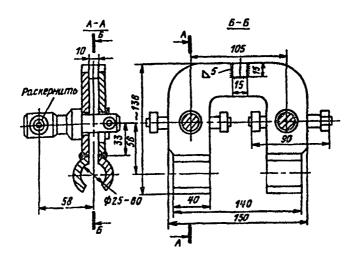



Рис. П11.3. Приспособление для стыковки труб диаметром 60 мм

Рис. П11.4. Приспособление для центровки труб диаметром 25–60 мм

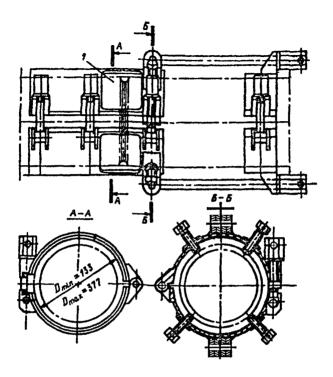


Рис. П11.5. Приспособление хомутного типа для центровки труб диаметром 133–377 мм (1 – вырезы в хомутах для наложения прихваток)

ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ ОБЛИЦОВОЧНОГО СЛОЯ СВАРНЫХ ШВОВ СТЫКОВ ТРУБ*

- 1. Настоящая технология разработана для ручной дуговой сварки неповоротных стыков труб из стали любой марки, на которые распространяется настоящий РД.
- 2. Наложение облицовочного слоя по предлагаемой технологии выполняется с целью придания надлежащего качества и внешнего вида верхнему слою шва, сокращения расходов электродов за счет выполнения облицовочного шва оптимальных размеров.

Сварщика нужно специально обучить качественному выполнению облицовочного слоя.

3. Основной шов должен заполнять разделку не до краев, а оставив по всему периметру стыка место для наложения облицовочного слоя (рис. П12.1). Остаточная глубина а зависит от диаметра электрода, которым будет выполняться облицовочный слой:

Диаметр электрода, мм	2,5	3,0	4,0
Остаточная глубина а. мм	1.0-1.5	1.5-2.0	2.0-2.5

Сварка в потолочном и вертикальном положении должна производиться электродами диаметром не более 3 мм.

Электроды для сварки облицовочного слоя должны быть той же марки, которой выполнялся основной шов.

4. На вертикальных стыках ширина облицовочного валика b (рис. П12.2) не должна быть более 16 мм для углеродистых и низколегированных сталей и 10 мм — для высоколегированных.

^{*} Рекомендации составлены по материалам фирмы «Центроэнергомонтаж».

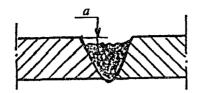


Рис. П12.1. Остаточная глубина для наложения облицовочного слоя

На горизонтальных стыках облицовочный слой следует накладывать ниточным швом или с незначительными поперечными колебаниями электрода.

Выпуклость (усиление) шва h должно составлять для труб с толщиной стенки до 10 мм не более 3 мм, с толщиной стенки свыше 10 до 20 мм — не более 3,5 мм, при большей толщине стенки— не более 4 мм; минимальный размер усиления — 0,5 мм.

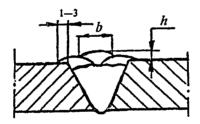


Рис. П12.2. Размеры облицовочного слоя

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРУБОСВАРОЧНЫХ АВТОМАТОВ (СВАРОЧНЫХ ГОЛОВОК) ДЛЯ АРГОНОДУГОВОЙ СВАРКИ НЕПОВОРОТНЫХ СТЫКОВ ТРУБ

Таблица П13.1

Автоматы для сварки без присадки

Марка ав- томата (сварочной головки)	сварив	мер заемых , мм	Мак- сималь- ный свароч-	Макси- маль- ная ско-	Ра- диус вра- щаю-	Уста- новоч- ная длина,	Мас- са го- лов- ки, кг
	диа- метр	толщи- на стенки	ный ток, А	рость свар- ки, об/мин	щихся час- тей, мм	мм (не менее)	
Свароч- ные голов- ки типа «Малыш» (СА):							
CA-305	14–25		80	3,04	28	45	2,3
CA-306	25–38	≤ 3,5	100	3,06	36	45	3,8
CA-307	38–57		100	2,00	50	60	4,1
ОДА-2ГС	20-42	≤ 3,5	160	6,59	55	90	3,5
ОДА-3ГС	42-76		200	2,00	85	95	5,5
ΓT1-57	25–57	≤ 3,5	160	3,50	63	88	4,6
ГТ1-108	56–108		200	1,87	115	113	9,5
ока-1и ока-2и	76– 133 133– 219	Для сварки корне- вых слоев	200 200	1,53 0,80	128 180	137 140	12,5 18,0

Примечания.

- 1. Головки «Малыш», ОДА, ГТ1 и ОКА работают с аппаратурой управления ЭР-240 и источником питания ТИР-300ДМ1 или ТИР-ВЧ-160-АУ1 со встроенной аппаратурой управления.
- 2. Головка ГТ1-108 имеет механизмы автоматической регулировки напряжения дуги (АРНД) и колебания горелки.

Таблица П13.2 Автоматы для сварки с присадкой

Марка автомата (сварочной головки)	свар мых	мер ивае- труб, м	Мак- си- маль- ный	си- маль- ус ново- аль- ная вра- чная ный ско- щаю- дли-			
	диа- метр	тол- щина стен- ки	сва- роч- ный ток, А	рость сварки, об/мин	щих- ся час- тей, мм	на, мм (не ме- нее)	
«Комета-57»	20– 57	≤8	300	2,12	150	170	12,0
«Комета-108»	56- 108	≤ 20	300	1,13	170	175	16,5
«Комета-160»	108– 159	≤ 25	300	0,50	200	175	17,2
«Орбита» (CA-411)	219- 1420	≤ 60	300	33 м/ч	160*	290	12,4
«Минора-1» (СА-534)	≥ 30	≤ 20	300	24 м/ч	66*	195	4,0
ОДА-П:							
ОДА 20-42М	20- 42	≤8	160	2,56	73	80	3,8
ОДА 42-76М	42– 76	≤8	200	2,16	95	85	4,6
ОДА 76-133М	76– 133	≤ 16	250	1,10	160	105	9,5
ОДА 133-220М	133– 220	≤ 16	250	1,00	210	105	11,0

^{*} Просвет для прохода головки, мм.

Примечания.

- 1. Трубосварочные головки ОДА-П имеют единый модульный конструктив с четырьмя типоразмерами сварочных головок и обеспечивают сварку стыков труб диаметром от 20 до 220 мм.
- 2. Трубосварочные головки ОДА-П работают с источниками питания ТИР-АУ4 (ДС-САУ-4) со встроенной аппаратурой управления, головки «Комета», «Орбита», «Минора-1» с аппаратурой управления СА-280М1 или ЭР-247 и источником питания ТИР-300 ДМ1 или ТИР-ВЧ-250.
- 3. Сварочные головки «Комета» имеют единый вращатель и три сменные планшайбы для различных способов сварки: неплавящимся электродом в защитном газе без присадки, с присадкой, плавящимся электродом в защитном газе.

ТЕХНИЧЕСКИЕ ДАННЫЕ ИСТОЧНИКОВ ПИТАНИЯ ДЛЯ ТЕРМООБРАБОТКИ

Таблица П14.1

Сварочные трансформаторы, используемые для термообработки сварных соединений

Характеристика					Мар	ка транс	формат	ора				
	ТД-102	тд-306	ТД- 500-4	ТДМ- 201	ТДМ- 302	ТДМ- 402	ТДМ- 502	ТДМ- 602	ТДФ- 1001	ТДФЖ- 1002	ТДФ- 1601	тдфж- 2002
Номинальный сварочный ток, А	160	250	500	200	300	400	500	600	1000	1000	1600	2000
Пределы регу- лирования то- ка, А	60 - 175	100- 300	100- 560	60- 200	90- 300	100- 400	120- 500	130- 600	400– 1200	300- 1200	600 <u></u> 1800	600- 2200
Напряжение холостого хода, В, не более	80	80	76	80	80	80	80	80	71; 75	120	95; 110	120

Продолжение приложения 14 Окончание табл. П14.1

Характеристика	Марка трансформатора												
	ТД-102	тд-306	ТД- 500-4	ТДМ- 201	ТДМ- 302	ТДМ- 402	ТДМ- 502	ТДМ- 602	ТДФ- 1001	ТДФЖ- 1002	ТДФ- 1601	тдфж- 2002	
Продолжитель- ность нагрузки, ПН, %	20	25	60	40	60	60	60	60	100	100	100	100	
Габариты, мм													
длина	570	630	780	280	380	410	410	440	1200	1430	1200	1430	
ширина	325	370	670	230	300	350	380	430	830	760	830	760	
высота	530	585	835	270	340	380	380	380	1200	1220	1200	1220	
Масса, кг	38	67	210	30	53	80	94	120	720	540	1000	840	

Преобразователи машинные средней частоты для индукционного нагрева сварных соединений

Марка преобразо- вателя	Рабо- чая частота тока, Гц		генератора ность преоб- охлажи элек- разо- ния аг		Система охлажде- ния агре- гата	Расход на ох- лажде- ние	Габаритные размеры преобразователя, мм	Масса преоб- разова- теля, кг		
		мощ- ность, кВт	напряже- ние, В	сила тока, А	двига- теля, кВт	ля, %		воды, м ³ /ч	[высота (длина) х х диаметр]	
ВПЧ-50-2400	2400	50	800/400/ 200	69/139/ 273	76	75	Воздушно- водяная	2,1	1306 × 860	1660
ВПЧ-100-2400	2400	100	800/400/ 200	139/278/ 556	138	75	То же	2,4	1555 × 855	2240
ВПЧ-50-8000	8000	50	800/400/ 200	69,5/139/ 278	77	Не ме- нее 70	»»	2,1	1390 × 860	1870
ВПЧ-100-8000	8000	100	800/400/ 200	139/278/ 556	140	Не ме- нее 75	»»	2,4	1685 × 860	2610
ППЧВ-250-2,4- 380/660	2400	250	800	329	290	86	» »	3,6	1870 × 1062	4360
ППЧВ-320-1,0- 380/660	2400	320	800	400	364	88	»»	3,6	1870 × 1062	4400

Тиристорные преобразователи частоты (инверторы) для индукционного нагрева сварных соединений

Марка преобразо- вателя	Рабочая частота тока, Гц	Номи- наль- ная мощ- ность,	Входные параметры		дные КПД, охлажде- воды на ры преобр		Габаритные размеры преобразователя, мм	Масса преоб- разова- теля, кг	
	!	кВт	напряже- ние, В	_ 1 ' 1 1 1 1					
СЧИ-100-2,4	2400	100	400	250	94	Водяное	1,5	1845 × 1120 × 1700	1840
ИТ-100*	1000- 2400	100	400	250	94	Воздуш- ное	-	1200 × 1130 × 1660	1620
ИТ-250*	1000- 1600	250	≤ 1000	≤ 1000	94	То же	-	3500 × 2120 × 2000	2000

^{*} Установки изготавливаются ЗАО «Прочность МК». Подсоединяются непосредственно к сварочным разводкам напряжением 95, 180, 275 В или имеют свой автономный источник питания.

Установки для термической обработки сварных соединений труб

Показатель	Марка установки		
	МИТ-100	УТ-250	
Максимальная потребляе- мая мощность, кВт	100	291	
Выходные параметры по- стового устройства:			
максимальная температура нагрева, °C	1100	1100	
напряжение, В	800/400/200	800	
номинальный ток, А	139/278/556	329	
частота, Гц	2400	2370	
Максимальное расстояние от источника питания (пре- образователя частоты) до сварного стыка, м	175	175	
Максимальное расстояние от постового устройства до сварного стыка, м	25	25	
Диаметр обрабатываемого трубопровода, мм	133–1020	133–1420	
Толщина стенки, мм	12–90	до 100	
КПД преобразователя, %	77	86	
Расход охлаждающей воды, л/мин:		•	
через преобразователь	60	60	
через постовое устройство	40	40	
Габаритные размеры, мм:			
преобразователя	Ø 900 × 1440	Ø 1360 × 1780	
пульта управления	950 × 600 × 900	750 × 600 × 650	

Показатель	Марка установки		
	МИТ-100	УТ-250	
шкафа запуска	950 × 1000 × 2000	950 × 1000 × 1730	
постового устройства (без индуктора)	950 × 750 × 1470	950 × 750 × 1450	
Масса, кг:			
преобразователя	1930	4250	
пульта управления	до 70	до 70	
шкафа запуска	до 500	до 500	
постового устройства (без индуктора)	до 250	до 250	

Примечание. Установка МИТ-100 оснащена преобразователем ВПЧ-100-2400, установка УТ-250 — ППЧВ-250-2,4-380/660. Установки изготавливаются ЗАО «Прочность МК».

КОНДЕНСАТОРЫ СРЕДНЕЙ ЧАСТОТЫ, ПРИМЕНЯЕМЫЕ ДЛЯ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ ПРИ ТЕРМООБРАБОТКЕ СВАРНЫХ СТЫКОВ

Таблица П15.1

Параметры конденсаторов

Марка конденсатора	Напря- жение, В	Часто- та, Гц	Мощ- ность, квар	Ем- кость, мкФ	Номер схемы включе- ния (по табл. П15.2)
ЭСВ-0,5-2,4-4У3	500	2400	300	79,60	1
ЭСВ-0,8-2,4-2(4)УЗ	800	2400	300	31,20	2, 1
ЭСВП-0,8-2,4У3	800	2400	300	31,20	5
ЭСВ-1-2,4-2(4)УЗ	1000	2400	300	19,90	2, 1
ЭСВП-1-2,4У3	1000	2400	300	19,90	5
ЭСВ-1,6-2,4-2(4)УЗ	1600	2400	300	7,80	3, 4
ЭСВ-2-2,4-2(4)УЗ	2000	2400	300	4,97	3, 4
ЭCB-0,5-10-4У3	500	10 000	400	25,50	1
ЭСВ-0,8-10-2(4)УЗ	800	10 000	400	9,96	2, 1
ЭСВП-0,8-10У3	800	10 000	400	9,96	5
ЭCB-0,5-2,4-4Т3	500	2400	250	66,40	1
ЭCB-0,8-2,4-2(4)T3	800	2400	250	25,90	2, 1
ЭСВП-0,8-2,4Т3	800	2400	250	25,90	5
ЭСВ-1-2,4-2(4)ТЗ	1000	2400	250	16,60	2, 1
ЭСВП-1-2,4Т3	1000	2400	250	16,60	5
ЭСВ-1,6-2,4-2(4)ТЗ	1600	2400	250	6,47	4,3

Продолжение приложения 15 Продолжение табл. П15.1

Марка конденсатора	Напря- жение, В	Часто- та, Гц	Мощ- ность, квар	Ем- кость, мкФ	Номер схемы включе- ния (по табл. П15.2)
ЭСВ-2-2,4-2(4)Т3	2000	2400	250	4,15	4, 3
ЭСВ-0,5-10-4Т3	500	10 000	300	19,10	1
ЭСВ-0,8-10-2(4)ТЗ	800	10 000	300	7,46	2, 1
ЭСВП-0,8-10ТЗ	800	10 000	300	7,46	5
ЭСВК-0,5-2,4У3	500	2400	550	146,00	1
ЭСВК-0,8-2,4У3	800	2400	550	57,00	1
ЭСВК-1-2,4У3	1000	2400	550	36,50	1
ЭСВК-1,6-2,4У3	1600	2400	550	14,25	3
ЭСВК-2-2,4У3	2000	2400	550	9,10	3
ЭСВК-0,5-10У3	500	10 000	650	41,40	1
ЭСВК-0,8-10УЗ	800	10 000	650	16,17	1
ЭЭВК-0,5-2,4УЗ	500	2400	550	146,00	1
ЭЭВК-0,8-2,4УЗ	800	2400	550	57,00	1
ЭЭВК-1-2,4У3	1000	2400	550	36,50	1
ЭЭВК-1,6-2,4УЗ	1600	2400	550	14,25	3
ЭЭВК-2-2,4УЗ	2000	2400	550	9,10	3
ЭЭВК-0,5-10УЗ	500	10 000	650	41,40	1
ЭЭВК-0,8-10УЗ	800	10 000	650	16,17	1
ЭЭВК-0,5-2,4Т3	500	2400	550	146,00	1
ЭЭВК-0,8-2,4Т3	800	2400	550	57,00	1
ээвк-1-2,4т3	1000	2400	550	36,50	1
ЭЭВК-1,6-2,4Т3	1600	2400	550	14,25	3
ЭЭВК-2-2,4Т3	2000	2400	550	9,10	3
ээвк-0,5-10Т3	500	10 000	650	41,40	1

Марка конденсатора	Напря- жение, В	Часто- та, Гц	Мощ- ность, квар	Ем- кость, мкФ	Номер схемы включе- ния (по табл. П15.2)
ЭЭВК-0,8-10ТЗ	800	10 000	650	16,17	1
ээпвп-0,4-2,4-У3, Т3	400	2400	250	103,67	6
ээпвп-0,8-2,4-уз, тз	800	2400	300	31,10	6
ЭЭПВП-1-2,4-У3, ТЗ	1000	2400	300	19,90	6
ээпвп-0,4-10-уз, тз	400	10 000	250	24,88	6
ЭЭПВП-0,8-10-УЗ, ТЗ	800	10 000	300	7,46	6

Примечание. Конденсаторы марок ЭСВ и ЭСВП в настоящее время не выпускаются.

Таблица П15.2

Схемы включения групп конденсаторов

Nº cxe- мы	Схемы включения	Точки прило- жения рабо- чего напря- жения	Емкость конденсатора
1	$\begin{array}{c c} c_{2p} c_{2p} c_{2p} c_{2p} c_{2p} \end{array}$	0 – 1, 2, 3, 4	C = 4 C _{rp}
2		0 – 1, 2	C = 2 C _{rp}

Nº cxe- мы	Схемы включения	Точки прило- жения рабо- чего напря- жения	Емкость конденсатора
3	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	1, 2-3, 4	$C = C_{rp}$
4	$ \begin{array}{c c} c_{zp} & c_{zp} \end{array} $	1-2	$C = C_{rp}/2$
5	C _{2p} 1 C _{2p} 2 C _{2p} 3 C _{2p} 4	0-1, 2, 3, 4 0-1 0-2 0-3 0-4	$C = C_{rp1} + C_{rp2} + C_{rp3} + C_{rp4} + C_{rp1} = 9/16C$ $C_{rp2} = 4/16C$ $C_{rp3} = 2/16C$ $C_{rp4} = 1/16C$
6	1 C ₁₉₁		$C = C_{rp1} + C_{rp2} + C_{rp3} + C_{rp4} + C_{rp3} + C_{rp4} + C_{rp2} = 7/16C$ $C_{rp2} = 5/16C$ $C_{rp3} = 3/16C$ $C_{rp4} = 1/16C$

ХАРАКТЕРИСТИКА ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Материал	Максимальная рабочая температура, °С	Масса на единицу площа- ди, г/м ² (объемная плотность, кг/м ³)
Асбестовые материалы:	}	
Ткани – марка (толщина, мм):		
AT-3 (2,5)	400	1200
AT-4 (3,1)	400	1525
AT-5 (2,2)	400	1350
AT-7 (2,4)	450	1525
AT-8 (3,3)	450	2100
AT-13 (4,4)	400	2600
ACT-1 (1,8)	500	1050
ACT-2 (ACT-ж) (0,9)	700	500
Картон: КАОН-1, КАОН-2, КАП тол- щиной 1,3–6,0 мм	500	(900–1400)
Шнуры:		
ШАОН, ШАП, ШАГ диамет- ром 5–25 мм	400	83-380 г/м
Маты:		
высокотемпературные MBT	1000	(250)

Материал	Максимальная рабочая температура, °C	Масса на единицу площа- ди, г/м ² (объемная плотность, кг/м ³)
базальтовые прошивные	700	(50)
холст из базальтового су- пертонкого волокна БСТВ	700	(20)
Кремнеземные материалы:		
Ткани – марка (толщина, мм):		
KT-11(0,35)	1000	300
KT-11-13 (0,35)	1000	300
KT-11-TO (0,44)	1000	300
KT-11-TOA (0,44)	1000	300
KT-11-C8/3 (0,50)	1000	610
KT-11-C8/3-13 (0,50)	1000	580
KT-11-C8/3-TO (0,68)	1000	580
KT-11-C8/3-13-TO (0,64)	1000	580
KT-11-С8/3-ТО-ПХ (0,68)	1200	580
KT-11-TO-ПХ (0,44)	1200	300
KT-11-C12/7 (0,90)	1000	1100
K11-Tp-1,1-TO (1,1)	1000	960
Нити:		
K11C6-180-13	1000	180*
К11С6-170-БА	1000	170*
К11С6-250-БА	1000	250*

Материал	Максимальная рабочая температура, °С	Масса на единицу площа- ди, г/м ² (объемная плотность, кг/м ³)
Волокна:		
резаные волокна КВ-11 диа- метром 6–9 мкм и длиной волокна 50–100 мм	1000	
волокно каолинового соста- ва: вата ВКВ I и II сорта	1000	(100–150)
BKB-50, BKB-54, BKB-58	1200	(96–150)
иглопробивное полотно из кремнеземного волокна толщиной 5–25 мм – ИПП-КВ	1000	620-4750 (130-170)
рулонный материал ВКР-150	1000	(100–150)

^{*} Линейная плотность нити, текс.

ТЕХНИЧЕСКИЕ ДАННЫЕ ГИБКИХ НЕИЗОЛИРОВАННЫХ ПРОВОДОВ ДЛЯ ИНДУКЦИОННЫХ НАГРЕВАТЕЛЕЙ (медные провода марки M по ГОСТ 839.

(медные провода марки М по ГОСТ 839, МГ и МГЭ по ТУ 16-705.466-87)

Мар- ка	Номи- нальное сечение провода, мм ²	Число и номиналь- ный диа- метр про- волок, мм	Диаметр прово- да, мм	Электриче- ское сопро- тивление 1 км провода, Ом, не более	Масса, кг/км
М	35	7 × 2,51	7,5	0,52	311
	50	$7 \times 3,00$	9,0	0,37	444
	70	19×2,13	10,7	0,27	612
	95	19×2,51	12,6	0,194	850
	120	19×2,80	14,0	0,156	1058
	150	19×3,15	15,8	0,123	1338
	185	$37 \times 2,51$	17,6	0,10	1659
	240	37×2.84	19,9	0,0789	2124
МГ	35	$133 \times 0,58$	8,70	0,521	322
	50	$133 \times 0,68$	10,20	0,375	442
	70	$189 \times 0,68$	12,55	0,254	629
	95	$259 \times 0,68$	14,28	0,193	861
	120	$259 \times 0,77$	16,17	0,150	1104
	150	259 × 0,85	17,85	0,123	1346
	185	361 × 0,80	20,00	0,100	1662
	240	427×0.85	22,95	0,0748	2219
мгэ	240	570×0,73	26,60	0,0776	2370

Примечание. У провода типа МГЭ имеется сердечник диаметром 11 мм.

ТЕХНИЧЕСКИЕ ДАННЫЕ ВОДООХЛАЖДАЕМЫХ КАБЕЛЕЙ ДЛЯ ИНДУКЦИОННЫХ УСТАНОВОК

Показатель	Гибкий индук- ционный ка- бель (ВГИК)	Токоподвод от конденса- тора к индук- тору (ВИТ)	Токоподвод от конденса- тора к источ- нику тока (МТК)
Номиналь- ный рабочий ток, А	800, 1000, 1200	1000–2000	300–400
Частота ра- бочего тока, Гц	50–10 000	50–10 000	50–10 000
Диаметр кабеля, мм	25–30	33–50	33–37
Длина одной секции кабеля, м	10–25	5–25	5–25
Изоляция	Термостойкая резина, асбо- тканевый че- хол, стеклотка- невый чехол	Термостойкая резина	Термостойкая резина

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРОВОЛОК (ГОСТ 12766.1) И ЛЕНТ (ГОСТ 12766.2)

из прецизионных сплавов для электронагревателей радиационного и комбинированного действия

Марка сплава	Рабочая температура нагре- вательного элемента, °C		Ле	Прово- лока	
	предель- ная	оптималь- ная	толщи- на, мм	ширина, мм	диаметр, мм
X15H60	1000	950			0,4-3,0
X15H60-H	1125	1075			0,1–7,5
X20H80*	1100	1050	0,1–3,2	6-250	3,2–7,5
X20H80-H	1200	1150			0,1–7,5
Х23Ю5Т	1400	1350		ŀ	0,3–7,5
Х27Ю5Т	1350	1300			0,3–7,5

^{*} Изготавливаются по ТУ 14-1-3225-91.

Примечание. Для радиационных электронагревателей ГЭН (КЭН) рекомендуется проволока из сплавов X15H60, X15H60-H, X20H80 и X20H80-H диаметром 2–4 мм.

ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ РАДИАЦИОННОГО И КОМБИНИРОВАННОГО ДЕЙСТВИЯ

Таблица П20.1

Технические данные гибких пальцевых радиационных нагревателей типа ГЭН (ТУ 36-1837–82)

Марка электро- нагре- вателя	Наружный диаметр нагрева- емой тру- бы, мм	Длина сек- ции <i>L</i> , мм	Число- паль- цев в секции	Масса сек- ции, кг	Напря- жение тока, В	Потреб- ляемая мощ- ность, кВт
ГЭН 108	108	446	13	3,63	20,5	2,05
ГЭН 133	133	542	16	4,18	24,0	2,40
F3H 150	150	CCC	10	4,00	20,3	2,09
ГЭН 168	168	638	19	4,84	27,5	2,73
ГЭН 194	194	734	22	5,46	31,0	3,10
ГЭН 219	219	798	24	5,87	33,0	3,30
ГЭН 245	245	894	27	6,45	36,6	3,62
ГЭН 273	273	958	29	6,85	39,0	3,90
ГЭН 325	325	1118	34	7,88	44,7	4,42

Таблица П20.2

Технические данные радиационных нагревателей типа ГРЭН (УГНК.01.0001.000 ТУ)

Пло- щадь нагре- вателя,	Мас- са, кг	са, кг греватель- м ного эле-	Макси- мальная темпе- ратура	Электрические параметры			
CM ²		волоки)	нагрева трубы, °С	ток, А	напря- жение, В	мощность, кВт	
1100	4	X20H80	900	60	60	3,6	
750	4	Х23Ю5Т	1150	75	60	4,5	

Показатель	Марка электронагревателя							
	КЭН-1	кэн-2	кэн-з	КЭН-4-1	КЭН-4-2	КЭН-4-3		
Оптимальный ток, А	50	100	250	300	300	300		
Максимальная мощность, кВт	0,9	3,3	13,5	17,7	20,5	23,4		
Падение напряжения на электронагревателе, В	15	28	45	49	57	65		
Количество нихромовых проволок диаметром 3,6 мм, штук	1	2	5	6	6	6		
Марка керамического на- гревательного изолятора	икн-202	ИКН-202	ИКН-302	ИКН-302	ИКН-302	ИКН-302		

Размеры нагреваемых труб, мм:						
диаметр	25–108	108–219	219-325	377–1020	377–1220	377-1420
толщина стенки	До 25	До 40	До 50	До 50	До 50	До 50
Габаритные размеры КЭН, мм:						
длина	2316	4316	3604	7104	8404	9604
ширина	22	22	33	33	33	33
высота	22	22	33	33	33	33
Масса КЭН, кг	1,8	4,5	11,4	12,7	14,7	19,6

Примечание. Максимальная температура нагрева тоубы 1000 °C; оптимальное число нагревов до 750 °C составляет 25.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРОГРАММНОГО БЛОКА УПРАВЛЕНИЯ ТЕРМОПРОЦЕССОМ (БУТ) ПРИ ИСПОЛЬЗОВАНИИ НАГРЕВАТЕЛЯ ГРЭН

Напряжение питания, В 60
Частота, Гц 50
Выходное напряжение, В0÷60
Ток нагрузки максимальный, А75
Температура нагрева максимальная, °C1150
Число подключаемых нагревательных секций1+3
Мощность, кВт 15
Настройка на нагреваемый объект автоматическая
Количество программируемых участков2 или 10
Точность повторения запрограммированного температурного режима, °С±1
Встроенные градуировочные таблицы для термопардля всех типов
Габаритные размеры, мм 400 × 180 × 180
Масса, кг

ТЕХНИЧЕСКИЕ ДАННЫЕ ХРОМЕЛЬ-АЛЮМЕЛЕВЫХ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ (ТЕРМОПАР)

Таблица П22.1

Общая характеристика термоэлектрических преобразователей (термопар) типа ТХА по ГОСТ Р 50 431

Номи- нальная статиче- ская ха- рактери- стика преобразо- вания (гра-	тер элект	ерияп эмо- гродов	Диапазон измере- ний тем- пературы при дли- тельном примене- нии	Допускае- мый предел измерений температу- ры при кратковре- менном применении	Средняя термо- элс на 100°С разности темпе- ратуры, мВ	
дуировка)	положи- тельный	отрица- тельный	(сотни часов), °С	(десятки часов), °С		
XA (K)	Хромель	Алюмель	200–1000	1300	4,03	

Примечание. Химический состав хромеля — 90% никеля + + 10% хрома, алюмеля — 94,5% никеля + 5,5% — суммарное содержание алюминия, кремния, марганца, меди.

Марки термоэлектрических преобразователей типа ТХА

Марка преобразователя	Рекомен- дуемая ра- бочая дли- на, м	Диаметр термо- элек- трода, мм	Изготовитель
TXA-0292 TXA-0292-K	1,0–20,0 1,00–3,15	1,2 3,2	ОАО «Челябин- ский завод "Теп- лоприбор"»
ТХА-10 рис. 1 (обозначение по ТУ от ВШКЛ 405221.001-00 до ВШКЛ 405221.001-21)*	1,0–20,0	1,2	НПО «Техно- луч» ГОСНИИ НПО «Луч», г. Подольск
ТХА-10 рис. 2 (обозначение по ТУ от ВШКЛ 405221.001-27 до ВШКЛ 405221.001-32)*	1,00–3,15	3,2	
ТХА-0188 рис. 1	1,0-20,0	1,2	ПО «Электро-
ТХА-0188 рис. 2	1,00–3,15	3,2	термометрия», г. Луцк
ТХА-2388 рис. 2	1,00-3,15	3,2	1. 7.y q.k
TXA-0279	1,00–3,15	3,2	
TXA-0279-01	1,000-3,195	3,2	
TXA-0806	1,00–3,15	3,2	
TXA-1489	1,0-20,0	1,2	

^{*} Пример записи при заказе преобразователя хромель-алюмелевого конструктивного исполнения 21: «Преобразователь термоэлектрический ТХА-10 ВШКЛ 405221.001-21 ТУ 95 2465-93».

Примечания.

1. Термоэлектрические преобразователи изготавливаются: TXA-0188 по ТУ 25-7363.033–89; TXA-2388 по ТУ 25-7363.34–89; TXA-10 по ТУ 95 2465–93.

- 2. Термопреобразователи с диаметром термоэлектрода 3,2 мм выпускаются с изолированным рабочим спаем.
- 3. Пределы измерений: при длительном применении (сотни часов) от —50 до +1000 °C; при кратковременном применении (десятки часов) 1300 °C.

Таблица П22.3

Таблица соответствия обозначений термопреобразователей аналогичного назначения

Тип термопреобразователя по каталогу	Тип термо по НПО «Электро		
	1991 г.	1975 г.	1967 г.
НПО «Электро- термометрия», г. Луцк	T&A 0188 pirc. 1		TXA-1400
	ТХА-0188 рис. 2	TXA-0279-01	
	ТХА-2388 рис. 2	TXA-0279	TXA-0806
ТХА-0292 ТХА-0292-К ОАО «Теплоприбор», г. Челябинск	ТХА-0188 рис. 1 ТХА-0188 рис. 2		
ТХА-10 рис. 1 ТХА-10 рис. 2 НПО «Технолуч»	TXA-0188 рис. 1 TXA-0188 рис. 2		

ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕРМОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Таблица П23.1 Автоматические регистрирующие термоизмерительные приборы и устройства

	Марка	Общие данные	Основная погреш- ность прибора* ¹	На- пряже- ние сети, В	Пределы измерения темпера- туры, °С	Число точек изме- рения	Габариты, мм	Масса, кг
	КСП-4	С полупроводниковым усилителем, ленточной диаграммой шириной 250 мм, с трехпозиционным регулятором (или без него)	±0,25	220	0-800, 0-900, 0-1100, 0-1300	1, 3, 6, 12	400 × 400 × 367	22
	КСП-2	С полупроводниковым усилителем, ленточной диаграммой шириной 160 мм, с трехпозиционным регулятором (или без него)	±0,5	220	0–800, 0–900, 0–1100, 0–1300	1, 3, 6, 12	450 × 320 × 283	17–21

	РП 160М	С полупроводнико- вым усилителем, ленточной диаграм- мой шириной 160 мм	±0,5; ±1,0	220	0–800, 0–900, 0–1100, 0–1300	до 12	320 × 240 × 327	14,5
	Диск-250	С полупроводнико- вым усилителем, дисковой диаграммой диаметром 250 мм, число уставок сигна- лизации – 4	±0,5; ±1,0	220	0-800, 0-900, 0-1100, 0-1300	1	320 × 320 × 195	13
707	Технограф 100	С полупроводнико- вым усилителем, ленточной диаграм- мой шириной 100 мм, по 2 уставки сигнали- зации на каждый ка- нал	± 0,25; ±0,25	220	0–800, 0–900, 0–1100, 0–1300	до 6	144 × 144 × 565	8
	Технограф 160	С полупроводнико- вым усилителем, лен- точной диаграммой шириной 160 мм, по 2 уставки сигнализа- ции на каждый канал	± 0,25; ±0,25	220	0–800, 0–900, 0–1100, 0–1300	до 12	220 × 240 × 305	8

Марка	Общие данные	Основная погреш- ность при- бора* ¹	На- пряже- ние сети, В	Пределы измерения темпера- туры, °С	Число точек изме- рения	Габариты, мм	Масса, кг
А 100-Н	С полупроводниковым усилителем, ленточной диаграммой шириной 100 мм, по 2 уставки сигнализации на каждый канал	±0,5; ±1,0	220	0–800, 0–900, 0–1100, 0–1300	1,2,3	80 × 160 × 545* ² 120× 160 × 595* ³	8 12
ФЩЛ-502-08 – ФЩЛ-502-15	С полупроводниковым усилителем, ленточной диаграммой, с двумя-тремя позициями регулирования	± 0,25; ±0,25	220	0-800, 0-900, 0-1100, 0-1300	до 12	400 × 400 × 416	30

Примечания.

- 1. Градуировка всех марок термоизмерительных приборов и устройств ХА.
- 2. Приборы и устройства регистрирующие одно- и многоканальные выпускают следующие организации: РП 160M ПО «Львовприбор»;

Диск-250 - ОАО «Челябинский завод "Теплоприбор"»:

А 100-H - ОАО «Челябинский завод "Теплоприбор"»;

Технограф 100 - ОАО «Челябинский завод "Теплоприбор"»:

Технограф 160 - ОАО «Челябинский завод "Теплоприбор"»:

ФШЛ-502-08 – ФШЛ-502-15 – ОАО «Йошкар-олинский завод "Электроавтоматика"».

3. Устройства ФЩЛ-502, измеряющие и регистрирующие сигналы от термоэлектрических преобразователей, предназначены также для сигнализации отклонений измеряемых величин от заданных значений и формирования выходных сигналов на исполнительные устройства.

^{*1} Погрешность указана в % от диапазона показаний прибора и цифровой регистрации прибора.

^{*2} Одно-, двухканальные.

^{*3} Трехканальные.

Милливольтметры

	Марка	Наименование	Класс точности	Предел измере- ния, °С	Внешнее сопротив- ление, Ом	Габариты, мм	Масса, кг
;	Ш-450	Показывающий, щитовой, с профильной шкалой, одноточечный	1; 1,5	0–800, 0–900, 0–1100, 0–1300	15	197 × 160 × 40	1,0
	Ш-4512	То же	1	0–800, 0–900, 0–1100, 0–1300	15	230 × 160 × 80	1,5
	Ш-4501	Показывающий, регулирующий (двухпозиционного регулирования), с профильной шкалой, одноточечный	1; 1,5	0–800,. 0–900, 0–1100, 0–1300	15	290 × 200 × × 100	4,5

4	۵.
-	4
٠	۷,

Ш-4500 Показывающий, щитовой, с профильной шкалой, одното- чечный	1; 1,5	0–800, 0–900, 0–1100, 0–1300	15	244 × 200 × × 100	3,0	
---	-----------	---------------------------------------	----	----------------------	-----	--

Примечания.

- 1. Милливольтметры имеют термокомпенсатор для автоматической компенсации влияния окружающей температуры.
 - 2. Градуировка всех марок милливольтметров ХА.

Таблица П23.3

Пирометры излучения

Марка пиро- метра	Тип пирометра	Диапазон измеряемых температур, °C	Пределы измерения температуры, °C	Основная погреш- ность, ±°C	Габариты телескопа, мм	Масса теле- скопа (ви- зирной го- ловки), кг
ОППИР-017* (модифика- ция 1)	Оптический визуальный переносной	800–2000	800–1400 1200–2000	20 30	300 × 290 × × 240	2
«Проминь»		800-4000	800–1400 1200–2000	12 20	290 × 195 × × 80	1,6

Марка пиро- метра	Тип пирометра	Диапазон измеряемых температур, °C	Пределы измерения температуры, °C	Основная погреш- ность, ±°C	Габариты телескопа, мм	Масса теле- скопа (ви- зирной го- ловки), кг
ЛМП-066	Лабораторный оптический микропирометр	800–4000	800–1400 1200–2000	14 20	560 × 520 × × 260	12
ОМП-054		800–4000	800–1400 1200–2000	14 20	560 × 520 × × 280	12
ВИМП-015М	Оптический визуальный инфракрасный	400–4000	400–850 800–1400	12 14	690 × 560 × × 280	11
ФЭП-4М	Фотоэлектри- ческий	600–2000	600–1100 800–1300 850–1400	15	456 × 415 × × 264	12

^{*} Снят с производства.

ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ УДЛИНЯЮЩИХ ПРОВОДОВ (ТУ 16.К19-04-91)

Таблица П24.1

Характеристика термоэлектродного удлиняющего провода для термопары типа ТХА

	Термоэлектродный удлиняющий провод				сопр 1 м (Ом	оимер отивл пров для (ий, ма	тение ода сече-	Термо-ЭДС при темпе- ратуре хо- лодных кон- цов 0 °С
Тип	i .	кительная кила		Отрицатель- ная жила				и горячего спая 100°С, мВ
	мате- риал	цвет оп- летки	мате- риал	цвет оплетки	1,0	1,5	2,5	
М	Медь	Крас- ный, ро- зовый	Конс- тан- тан	Корич- невый	0,52	0,32	0,21	0,64

Примечание. Цвет изоляции провода типа М – коричневый.

Таблица П24.2

Марки и области применения термоэлектродных проводов для термопар типа ТХА

Марка провода	Наименование	Область применения
птв	Провод термоэлек- тродный с поливи- нилхлоридной изоля- цией	Для прокладки в помещениях, трубах, а также внутри приборов при температуре эксплуатации до 70°C

Марка провода	Наименование	Область применения
ПТГВ	То же гибкий	То же, где требуется по- вышенная гибкость
ПТТВ	Провод термоэлек- тродный теплостой- кий с поливинилхло- ридной изоляцией	Для прокладки в помещениях, трубах, а также внутри приборов при температуре эксплуатации до 90°C
ПТГТВ	То же гибкий	То же, где требуется по- вышенная гибкость
птвп	Провод термоэлек- тродный с поливи- нилхлоридной изоля- цией в оплетке из стальной оцинкован- ной проволоки	Для прокладки в помещениях, установках, где требуется защита от механических воздействий при температуре эксплуатации до 70 °C
пттвп	То же теплостойкий	То же при температуре эксплуатации до 90°C
птп	Провод термоэлектродный с изоляцией из полиэтилентерефталатной пленки в обмотке и общей оплетке из полиэфирных нитей, пропитанной клеем БФ	Для прокладки в помещениях и внутри приборов
ептп	То же, экранирован- ный медной луженой проволокой	То же, где требуется за- щита от внешних элек- тромагнитных полей и ме- ханических воздействий

Характеристика термоэлектродных проводов

Марка провода	Число жил и номинальное	Рас- четная		онструкі ооводящ	
	сечение жил, мм ²	масса 1 км прово- да, кг	номи- нальное сечение, мм ²	число прово- лок	номиналь- ный диа- метр про- волок, мм
ПТВ, ПТТВ	$1\times0,20+1\times0,20$	8,2	0,2	1	0,50
	1×0,75 +1×1,00	27,7	0,75		0,97
	$1 \times 0,75 + 1 \times 1,50$	33,3	1,0		1,13
	$1 \times 1,00 + 1 \times 2,50$	45,2	1,5		1,40
птвп, пттвп	1 × 0,75 + 1 × 1,00	57,8	2,5		1,76
ПТГВ, ПТГТВ	1 × 0,75 + 1 × 1,00	27,7	0,75	7	0,37
птп	$1 \times 0,75 + 1 \times 1,50$	24,1	1,0		0,40
	1 × 1,00 + 1 × 2,50	35,9	1,5		0,50
ептп	$1 \times 0.75 + 1 \times 1.50$	36,1	2,5		0,67
	$1\times1,00 + 1\times2,50$	50,0			

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ СТИЛОСКОПИРОВАНИЯ ОСНОВНОГО МЕТАЛЛА ОБОРУДОВАНИЯ

	Характерист исследуемой		Результаты стилоскопирования
Класс	, тип стали	Марка стали	
Перлитный класс	Низколегиро- ванные конст-	16ГН, 14ГН	Отсутствие хрома, кремния. Наличие никеля. Содержание марганца
	рукционные стали	14XFC	Отсутствие никеля. Наличие хрома и кремния. Содержание марганца
	Низколегиро- ванные тепло-	12MX, 15XM, 20XMЛ, 12X2M1	Наличие молибдена, отсутствие ванадия. Содержание хрома
	устойчивые стали	12X1MФ, 15X1M1Ф, 15X1M1Ф-ЦЛ, 20XMФЛ, 15X1M1ФЛ	Отсутствие ниобия. Наличие молибдена и ванадия. Содержание хрома
		12Х2МФСР	Отсутствие ниобия. Наличие молибдена, ванадия, кремния. Содержание хрома
		12Х2МФБ	Наличие молибдена, ванадия, ниобия. Содержание хрома

	Мартенсит- ный и мар- тенситно- ферритный класс	Легированные хромистые стали	10Х9МФБ (ДИ 82-Ш)	Наличие молибдена, ванадия, ниобия. Содер- жание хрома (8,5–9,6%)
		Высоколегиро- ванные хроми-	20X13	Отсутствие никеля, молибдена, ванадия, вольфрама, ниобия. Содержание хрома более 10%
		стые стали	12Х11В2МФ	Отсутствие никеля. Наличие вольфрама, мо- либдена, ванадия. Содержание хрома более 10%
i			13X12H2B2MФ, 20X12BHMФ	Наличие никеля, молибдена, вольфрама, ва- надия. Содержание хрома более 10%
			18Х12ВМБФР	Отсутствие никеля. Наличие молибдена, вана- дия, ниобия. Содержание хрома более 10%
	Аустенит- ный класс	Высоколегиро- ванные хромо- никелевые	12X18H12T, 12X18H10T	Отсутствие молибдена, ванадия, ниобия. На- личие титана. Содержание хрома (18–19%) и никеля 10–12%
		стали	31X19H9MB5T	Отсутствие ванадия. Наличие молибдена, вольфрама, ниобия, титана. Содержание хро- ма (18–20%), никеля около 10%

Характерист исследуемой		Результаты стилоскопирования
Класс, тип стали	Марка стали	1
Высоколегиро- ванные хромо- марганцевые стали	10Х13Г12БС2Н2Д2 (ДИ 59)	Отсутствие ванадия. Наличие ниобия. Содержание хрома (11,5–13,0%), марганца (12,0–13,5%), кремния (1,8–2,2%), меди (2,0–2,5%), никеля (1,8–2,5%)
Сплав на железоникелевой основе	XH35BT	Наличие вольфрама и титана. Содержание хрома (14–16%), никеля (35–39%)

Примечание. С помощью переносного стилоскопа процентное содержание никеля может быть определено при наличии его в металле не более 20%. При большем содержании никеля точное его количество не определяется, и в протоколе проверки основного металла (см. приложение 27, форма П27.17) пишется: «никеля более 20%».

ПЕРЕНОСНЫЕ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ТВЕРДОСТИ

Показатель	Марка твердомера								
	Динамический								
	ТЭМП-1	ТЭМП-2	тэмп-з	ТДМ-1	ИТ-5070	ИТ-5161	Польди	мэи-т7	
Диапазоны из- мерений твердо- сти по шкалам:									
Бринелля, НВ	100–450	95–460	95–460	90450	-	90–650	100-400	100-300	
Роквелла, HRC	22–68	22-68	22–68	20–70	-	_	-		
Виккерса, HV	300–950	95~950	95–950	375-850	80-940	-	-	-	
Шора, HSD	23–99	23–99	23–99	-	-			_	
Погрешность показаний при- бора, %	≤ 2,5 HRC ≤ 12 HB	3	3	± 2 HRC ± 15 HB, HV	±5	±5	±5–7	±0,25	

419

Показатель			·	Марка твер	домера			
			Дин	намический			-	Стати- ческий
	ТЭМП-1	тэмп-2	тэмп-з	ТДМ-1	ИТ-5070	ИТ-5161	Польди	МЭИ-Т7
Габаритные размеры, мм	35 × 95 × × 125	170 × 85 × × 35	30 × 60 × × 130	157 × 84 × × 30	Ø40× ×160	Ø 45 × × 255	Ø25× ×110	250 × 270 × × 300
Масса прибора, кг	0,3	0,4	0,22	0,3	0,3	0,3	0,4	11,0

Примечания.

- 1. Все твердомеры (кроме МЭИ-Т7 и Польди) электронные; ТЭМП-2 программируемый на базе микропроцессора; ТЭМП-3 упрощенная модель без микропроцессора (взамен ТЭМП-1).
- 2. Вместе с приборами могут быть поставлены образцовые меры (эталоны) твердости 2-го разряда по ГОСТ 9031: МТБ (HB); МТР (HRC); МТВ (HV).
 - 3. Шероховатость контролируемой поверхности должна быть не более Ra 2,5 мкм по ГОСТ 2798.
 - 4. Тип микроскопа для измерения отпечатка при использовании:

МЭИ-Т7 – МПВ-1,3; характеристика индентора – шарик диаметром 2,5–10 мм;

Польди – МПБ-2; характеристика индентора – шарик диаметром 10 мм.

ФОРМЫ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ НА СВАРОЧНЫЕ РАБОТЫ

- П27.1. Перечень трубопроводов, подлежащих сдаче заказчику после окончания монтажа (ремонта) (пример).
- П27.2. Сведения о сварных соединениях и результатах их контроля.
- П27.3. Схема расположения сварных стыков трубопровода (пример).
 - П27.4. Сводная таблица сварных стыков.
- П27.5. Сварочный формуляр фронтового экрана котла (пример).
 - П27.6. Сведения о сварщиках.
- П27.7. Акт на проверку сварочно-технологических свойств электродов.
- П27.8. Акт на проверку соответствия присадочного материала марочному составу.
 - П27.9. Акт на сварку контрольного соединения.
 - П27.10. Акт на вырезку производственных сварных стыков.
- П27.11. Акт на визуальный контроль и измерение размеров шва сварных соединений.
- П27.12. Наряд-заказ на испытание образцов сварных соединений.
- П27.13. Протокол механических испытаний образцов сварных соединений.
- П27.14. Протокол металлографических исследований образцов сварных соединений.
- П27.15. Заключение по ультразвуковому контролю сварных соединений.

- П27.16. Заключение по радиографированию сварных соединений.
- П27.17. Протокол стилоскопирования деталей и металла шва.
 - П27.18. Протокол измерения твердости металла шва.
 - П27.19. Журнал термообработки сварных соединений.
- П27.20. Акт на проверку сварных соединений путем прогонки металлического шара.

Форма П27.1 (пример)

Электростанция	
Энергоблок (котел, турбина) №	
Монтажная (ремонтная) организация	

перечень груоопрово сдаче заказчику по монтажа (р	осле окончания
СОГЛАСОВАНО	«УТВЕРЖДАЮ»
Главный инженер ТЭС	Главный инженер монтажного (ремонтного) участка
(подпись)	(подпись)
(фамилия, инициалы) «»200г.	(фамилия, инициалы) «»200г.
Наимонова Сро Параметры	Труба Катага Намар

Наименова-	Cpe-	Парам	етры	Тр	уба	Катего-	Номер
ние трубо- провода и номер чертежа	да	давле- ние, МПа (кгс/см²)	темпе- рату- ра, °С	диа- метр и толщи- на, мм	марка стали	рия тру- бопро- вода	мы схе-
Паропровод острого пара от котла к стопорному клапану и предохранительным клапанам, чертеж №	Пар	14 (140)	570	273 × × 36	12Х1МФ	l.1	1

Продолжение приложения 27 Окончание формы П27 1

Наименова-	Cpe-	Парам	етры	Tp	уба	Катего-	Номер
ние трубо- провода и номер чертежа	да	давле- ние, МПа (кгс/см²)	темпе- рату- ра, °С	диа- метр и толщи- на, мм	марка стали	рия тру- бопро- вода	MPI
Паропровод острого па- ра от сто- порного клапана к турбине, чертеж №	Пар	14 (140)	570	325 × × 25	15X1M1Φ	I.1	4
Питатель- ный трубо- провод от питатель- ных насосов до котла, чертеж №	Во- да	21 (210)	230	133 × × 12 194 × × 18 273 × × 25 325 × × 30	20	1.4	6
Газопровод от ГРП до первой за- движки (под землей), чертеж №	При- род- ный газ	0,3 (3)	-	426 × ×8	15FC	_	25

Электростанция
Энергоблок (котел, турбина) №
Монтажная (ремонтная) организация

Сведения о сварных соединениях и результатах их контроля

	формуляру	стенки труб	стыка	горизонтальный)
1 2	2 3	4	5	6

Присадо	Присадочный материал		Визуальный	Способ и	Твердость УЗД		УЗД
марка, диаметр	номер партии и сертифи- ката	инициалы сварщика, клеймо	контроль сварно- го соединения, номер, дата акта	режим термооб- работки	металла шва, НВ	оценка, баллы	номер и дата заключения
7	8	9	10	11	12	13	14

Радиог	рафирование	Стилоскопирование		Механические испытания*	Металлографические исследования*	
оценка, баллы	номер и дата заключения	тип металла шва	номер и дата протокола	номер и д	дата протокола	
15	16	17	18	19	20	

* Механические испытания и металлографические исследования выполняются для производственных сварных

« 200r.	
Руководитель монтажного (ремонтного) участка	(фамилия, инициалы)
Руководитель сварочных работ	(фамилия, инициалы)

(подпись)

соединений оговоренных в д. 18.6.4 РЛ 153-34 1-003-01

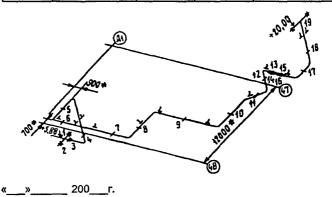

Форма П27.3 (пример)

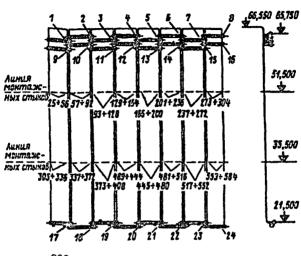
Схема расположения сварных стыков трубопровода

Электростанция	Схема №		
Энергоблок (котел, турбина) №			
Монтажная (ремонтная) организация			

Параметры среды: P_p = 16,1 МПа, T_p = 345 °C

Номера стыков	Расстояние между стыками, мм	Марка стали	Номера трубы и плавки	Диаметр и толщина трубы, мм
1–2	850	20		325 × 16
3–4	3200	20		325 × 16
	•••			•••
18-19	3150	20		325 × 16

Главный инженер монтажной (ремонтной) организации _____ (фамилия, инициалы)


	Окончание формы П27.3
Прораб по монтажу(подпись)	(фамилия, инициалы)
Руководитель	
сварочных работ(подпись)	(фамилия, инициалы)
Представитель дирекции (заказчика):	
должность (подпись)	_ (фамилия, инициалы)
Схема выполнена на основании:	
(номер чертежа, название труб	опровода,
наименование проектной орга	низации)

Продолжение приложения 27

Форма П27.4

Эле	стростан	ция				·	
Энер	огоблок ((котел, тур	бина) №				
Мон	гажная ((ремонтная	я) органи	зация		··	
		Сводная	таблиц	ца сварн	ых стык	ов	
К схеме расположения сварных стыков трубопровода №							
К сварочному формуляру №							
Nº ⊓/⊓	Наиме- нова- ние узла	• • •	Соединяемые Данные по свар ке монтажных (ремонтных) стыков (по рабо чим чертежам)		гажных чтных) по рабо-	полнительно заваренным	
		диаметр и толщи- на, мм	марка стали	коли- чество стыков	стыка номер	коли- чество стыков	
	L			<u> </u>			
«	»	200 <u>r</u> .					
•	водителі						
свар	очных р	абот	(подп	ись)	(фами	лия, ини	щиалы)

Сварочный формуляр фронтового экрана котла

«» 200г.				
Лавный инженер монтажной (ремонтной) организации (подпись)	(фамилия, инициалы)			
Прораб по монтажу(подпись)	. (фамилия , инициалы)			
Руководитель сварочных работ(подпись)	(фамилия, инициалы)			
Представитель дирекции (заказчика): должность(подпись)	_ (фамилия, инициалы)			
Формуляр выполнен на основании:				

Форма П27.6

Электростанция		
Энергоблок (котел, т	урбина) №	
Монтажная (ремонт	ная) организац	ция
(Сведения о с	варщиках
•	•	ыков трубопровода №
Фамилия, имя, отчество	Клеймо	Номер и срок действия удостоверения
«»200	<u>г</u> .	
Руководитель сварочных работ	(подпись)	(фамилия, инициалы)

Форма П27.7

Электростанция
Энергоблок (котел, турбина) №
Монтажная (ремонтная) организация
AKT №
на проверку сварочно-технологических
свойств электродов
«» 200r.
Мы, нижеподписавшиеся, руководитель сварочных работ
и аттестованный сварщик (фамилия, инициалы)
(фамилия, инициалы) (фамилия, инициалы)
составили настоящий акт в том, что нами произведена проверка
сварочно-технологических свойств электродов марки
диаметром мм, партии № Сварочно-технологичес-
кие свойства электродов проверялись путем: сварки в потолочном
положении таврового соединения пластин (погонов) толщиной
мм из стали марки; сварки вертикального неповорот-
ного стыка труб (потолочного участка труб) диаметром мм
при толщине стенки мм из стали марки
(ненужное зачеркнуть).
Электроды по сварочно-технологическим свойствам в соответствии
с требованиями ГОСТ 9466 признаны годными для сварки ответ-
ственных изделий.
Подписи:

Электростанция
Энергоблок (котел, турбина) №
Монтажная (ремонтная) организация
АКТ № на проверку соответствия присадочного материала марочному составу
« 200г.
Мы, нижеподписавшиеся, руководитель сварочных работ
(фамилия, инициалы) (фамилия, инициалы)
и аттестованный сварщик
составили настоящий акт в том, что нами произведена проверка соответствия марочному составу наплавленного металла электродов марки, партии №, сварочной проволоки, плавки № (ненужное зачеркнуть) путем стилоскопирования.
Результаты стилоскопирования показали следующее: наплавленный металл, сварочная проволока (ненужное зачеркнуть) относится к типу, марке
Подписи:

Форма П27.9

Продолжение приложения 27 Окончание формы П27.9

После сварки контрольный стык под	цвергался термообработке по
режиму: нагрев до температуры	°С, выдержка ч,
охлаждение со скоростью	°С/мин до температуры
°С, стык заклеймен	•
Поприми	

Подписи:

Электростанция
Энергоблок (котел, турбина) №
Монтажная (ремонтная) организация
AKT №
на вырезку производственных сварных стыков
«» 200r.
Мы, нижеподписавшиеся, мастер (ИТР) монтажного (ремонтного)
участка) и представитель заказчика (фамилия, инициалы)
(дирекции электростанции)(фамилия, инициалы)
(фамилия, инициалы) составили настоящий акт в том, что в нашем присутствии вырезано
производственных стыков № по схе-
ме (формуляру) №, труб диаметром (наименование изделий, узла)
мм с толщиной стенкимм из стали марки
, котла №, блока №,
ряда №, которые сварил(и) сварщик(и)
, клеймо №
(фамилия, инициалы)
Сварка стыков производилась способом
в положении без поворота присадочным материа-
лом марки диаметром мм,
партии №
Стыки заклеймены
Подписи:

Форма П27.11

Электростанция		
Энергоблок (котел, турбина) №		
Монтажная (ремонтная) организ	зация	_
AKT №	·	
на визуальный ког	нтроль и измерение	
размеров шва сва	арных соединений	
«» 200r.		
Мы, нижеподписавшиеся, мастер (И	ИТР) монтажного (ремонтного) учас	T-
ка и пр	едставитель заказчика (дирекци	И
(фамилия, инициалы)		
электростанции)(фами	составил	И
настоящий акт в том, что нами про		
измерение размеров швов стыкс	ов труб	_
из стали марки		
толщине стенки	мм, которые сварил(и) свар)-
щик(и)(фамилия, инициалы)	, клеймо №	<u>.</u> .
(фамилия, инициалы)		
В результате визуального контро	ля и измерения установлено:	
1. Стыки №	_ подлежат исправлению путе	М
ввиду нали	чия дефектов	
2. Остальные стыки по результат ны годными.	гам визуального контроля призна	3-
Примечание. После устране	ния дефектов эти стыки должны быт	ſЬ

Подписи:

вторично проверены с составлением повторного акта.

Электростанция								
Энергоблок (котел, турбина)	Nº	·····						
Монтажная (ремонтная) орга	низация							
		HA	\РЯД-ЗАКА	.3				
H	на испытан		азцов свај		инени	й		
D						« _	»	200r.
В лабораторию сварки и испы	ытания мета	аллов _	(трест	а, управлени	я)	_		
ОТ						_		
[номер или наимено	вание монта	жного (ре	емонтного) уч	астка, треста				
провод толщина стали (ко или стенки, мм ил	Вид стыка энтрольный и производ- ственный)	Вид сварки	Марка при- садочного материала	Режим термообра- ботки	Вид испы- тания	Коли- чество образцов	Марки- ровка образца	Фамилия, инициалы сварщика
Главный инженер монтажной	і (ремонтно	й) орган	изации			(d	рамилия,	инициалы)
·				(подпи	сь)			•
Руководитель сварочных раб	от		(подпись)		(c	рамилия,	инициалы)

Штамп	лаборатории

т лаооратории	Электростанция
	Энергоблок (котел, турбина) №
	Монтажная (ремонтная) организация
	ПРОТОКОЛ №
механических испытани	ий образцов сварных соединений от «»200 г.

200____ г.

Результаты

Образцы получены по наряду-заказу № _____ от «____» ____

Трубо- провод, узел	Диаметр и толщина стенки, мм	Марка стали	Марки- ровка образца	 •	 	Фамилия, инициалы сварщика

Начальник лаборатс	рии	(фамилия,	инициаль
	(подпись)		
Испытание провел		(фамилия,	инициалы
•	(подпись)	••	•

	_
	◺
	_
	◺
-	_

Штамп ла	аборатории		Э	Электростанция					
			Э						
			М	онтажная (ремонт	ная) организация				
			ПРОТОК	ОЛ №					
металл	ографических исс	ледова	аний обра	зцов сварных с	рединений от «_	»2	00r.		
	Образцы получ	эны по н	наряду-зак	азу № о Результаты	т « » ;	200 г.			
Трубо- провод, узел	Диаметр и толщина стыкуемых труб или элементов, мм	Марка стали	Маркиро- вка об- разца	Макроисследова- ние (описание и оценка)	Микроисследова- ние (описание и оценка)	Фамилия, инициалы сварщика	Оценка качества сварки		
Начальни	к лаборатории	(подп		фамилия, иници	алы)		<u> </u>		
Испытани	е провел	(подп		(фамилия, иници	алы)				

Электро	станция _							
Энергоб	лок (котел	, турбина)	№					
Монтажі	ная (ремо	нтная) ор	ганизация	i				
«»_	200_	r.						
IIO VI	ЗАКЛЮЧЕНИЕ № по ультразвуковому контролю сварных соединений							
-		_	-	-				
		(стыковы	х, угловых)	свај				
	(H	аименован	ие трубоп	ровода, узла)			
	∋ (формул			провод	цилась в с	оответ-		
		(наим	иенование	нтд)				
ультразв	зуковым д	ефектоско	пом типа	<u> </u>	· · · · · · · · · · · · · · · · · · ·	,		
		·		МГц, уго	л призмы	искате-		
	· · · · · · · · · · · · · · · · · · ·	F	^р езультат	ы				
Номер стыка по схе- ме или форму- ляру	Диаметр и толщи- на сты- куемых труб или элемен- тов, мм	Положение и размеры недоступных для контроля участков	Описа- ние об- наружен- ных де- фектов	Наиболь- шие допус- тимые раз- меры эк- вивалент- ного де- фекта, мм	Оценка результа- тов кон- троля, баллы	Номер записи в жур- нале УЗК		
Мастер по контролю (фамилия, инициалы)								
Контроль провел (фамилия, инициалы)								

Электростан	кид				
Энергоблок (г	котел, турб	бина) №			
Монтажная (ремонтная	а) организация <u> </u>			
«»	200г.				
по рад		ОЧЕНИЕ № шрованию сварн		іений	
Контроль сва	рных соед	динений			
	(наимено	вание трубопровода	а или узла)		
проводился с	примене	ением(аппаратур	ра или источн	ик излучения)	
		(наименование НТД	()		
с оценкой кач	нества по	(наименова	ние НТД, ном	ер ГОСТ)	
Схема форму	уляра № _				
		Результаты			
Номер свар- ного стыка по схеме (формуляру)	Объем контроля стыка, %	Номер записи в журнале учета результатов радиографического контроля	Описание обнаружен- ных дефек- тов	Оценка результатов контроля, баллы	
Мастер по контролю (фамилия, инициалы)					
Контроль провел(фамилия, инициалы)					

ч	ь	
ч	ь	
-		
4	ď	١

Электростан	нция						-				
Энергоблок	ергоблок (котел, турбина) №										
Монтажная (Ионтажная (ремонтная) организация										
Наименован	ие трубопро	вода или уз	ла котла	·							
Схема (фор	муляр) № _	·									
ПРОТОКОЛ № стилоскопирования деталей и металла шва от «» 200 г. Результаты											
Номер по- зиции по схеме или	Наимено- вание де- тали или	Диаметр трубы или арматуры,	1	Количество		Содержание, %, или наличие (отсутствие)			-	Соответствует марке стали или типу металла шва	
формуляру	номер стыка	ММ	деталей или стыков	спектраль- ных ана- лизов	Cr	Мо	٧	Mn	Nb	в соответствии с произведенным анализом	по проекту
Мастер по к	(фамилия, и	иниц	иалы	1)							
Контроль провел (подпись)				(фамилия, і	иниг	иаль	1)				

Электростан	ция							
Энергоблок (Энергоблок (котел, турбина) №							
Монтажная	(ремонтная	і) органи:	зация					
	измерени	ОКОЛ I ия тверд »	ости ме	талла шва				
К сварочном	К схеме расположения сварных стыков трубопровода № К сварочному формуляру № Твердость металла шва измерена твердомером типа							
	стыка по и толщи- стали сварки электрода металла формуляру на стенки трубы или прово- шва, НВ							
<u> </u>								
*Указать Начальник л	•	и	•	и среднюю тве (фамилия	•••			
Испытание г	ровел	•	дпись)	_ (фамилия,	инициалы)			

_
▴
┰
4
-

Электростанция
Энергоблок (котел, турбина) №
Монтажная (ремонтная) организация

ЖУРНАЛ термообработки сварных соединений

Наименование трубопровода
Схема расположения стыков трубопровода №
Вид нагревателя Способ измерения температуры

Дата прове- дения термо- обработки	Номер стыка по схеме	Способ нагрева	Марка стали	Диаметр и толщина стенки	Режим			Фамилия, подпись оператора-
				трубы, мм	время измерения температуры	темпе- ратура, °С	характер охлаж- дения	термиста

Мастер по термообработке _________(фамилия, инициалы)

Электростан	ция
Энергоблок ((котел, турбина) №
Монтажная (ремонтная) организация
	AKT №
	на проверку сварных соединений
n	утем прогонки металлического шара
	, · · · · · · · · · · · · · · · · · · ·
«»	_ 200r.
тростанции)	писавшиеся, представители заказчика (дирекции элек- и монтажной (должность, фамилия, инициалы)
(ремонтной)	организации
	организации (должность, фамилия, инициалы)
	астоящий акт в том, что сварные соединения труб на-
	иетром мм с толщиной стенки мм
(указыв	ается элемент котла – пароперегреватель, водяной
	экономайзер и др.)
проверены п	утем прогонки металлического шара диаметром
MM COLI	пасно требованиям НТД
(ук	азывается название и шифр НТД или чертежа)
Сварные сое	динения по результатам прогонки шара признаны год-
Подписи:	представитель заказчика
	представитель монтажной (ремонтной)
	организации

ДЕЛЕНИЕ СТАЛЕЙ НА ГРУППЫ

Таблица П28.1

Деление сталей на группы по ПБ 03-164-97

Группы сталей свари- ваемых деталей по ПБ 03- 164–97	Тип и/или класс основного материала	Марки сталей
1	Углеродистые и низ- колегированные кон- струкционные стали перлитного класса с гарантированным ми- нимальным пределом текучести не более 355 МПа	Ст2сп2, Ст3пс2, Ст3сп2, Ст3сп3, Ст3пс4, Ст3сп4, Ст3сп5, 08, 10, 20, 15Л, 20Л, 25Л, 30Л, 35Л, 10Г2, 15ГС, 16ГС, 17ГС, 17Г1С, 17Г1С-У, 09Г2С, 20ГСЛ
4	Низколегированные теплоустойчивые хромомолибденовые и хромомолибденованадиевые стали перлитного класса	12МХ, 15МХ, 12Х1МФ, 15Х1М1Ф, 15Х1М1Ф-ЦЛ, 20ХМЛ, 20ХМФЛ, 15Х1М1ФЛ, 12Х2МФСР, 12Х2МФБ, 20Х1МФ, 20Х1М1Ф1ТР, 20Х1М1Ф1БР
5	Легированные стали мартенситного класса с содержанием хрома от 4 до 10%	10Х9МФБ (ДИ 82-Ш)

Группы сталей свари- ваемых деталей по ПБ 03- 164–97	Тип и/или класс основного материала	Марки сталей
6	Высоколегированные (высокохромистые) стали мартенситного и мартенситно-ферритного классов с содержанием хрома от 10 до 18%	20X13, 12X11B2MФ, 13X11H2B2MФ, 20X12BHMФ, 18X12BMБФР
9	Высоколегированные стали аустенитного класса	12X18H10T, 12X18H12T, 12X18H9TЛ, 12X18H12M3TЛ, 31X19H9MBБT, 10X13Г12БС2H2Д2 (ДИ 59)
10	Сплавы на железо- никелевой основе	XH35BT

Деление сталей на группы при аттестации сварщиков и при аттестации технологии сварки

Материалы	Номер группы сталей свариваемых деталей	
	при атте- стации сварщи- ков*	при атте- стации технологии сварки**
Углеродистые и низколегированные конструкционные стали перлитного класса с гарантированным минимальным пределом текучести не более 355 МПа	M01	1
Низколегированные конструкционные стали перлитного класса с гарантированным минимальным пределом текучести свыше 355 до 500 МПа	M03	2
Низколегированные конструкционные стали перлитного класса с гарантированным минимальным пределом текучести свыше 500 МПа		3
Низколегированные теплоустойчивые хромомолибденовые и хромомолибденовые стали перлитного класса	M02	4
Легированные стали мартенситного класса с содержанием хрома от 4 до 10%	M05	5

Материалы	Номер группы сталей свариваемых деталей	
	при атте- стации сварщи- ков*	при атте- стации технологии сварки**
Высоколегированные (высокохромистые) стали мартенситного и мартенситно-ферритного классов с содержанием хрома от 10 до 18%	M04	6
Высоколегированные (высокохромистые) стали ферритного класса с содержанием хрома от 12 до 30%		7
Высоколегированные стали аустенитно-ферритного класса	M11	8
Высоколегированные стали аусте- нитного класса		9

^{*} Согласно Технологическому регламенту проведения аттестации сварщиков и специалистов сварочного производства. ПБ 03-278-99.

Примечание. В табл. П28.2 приведены обозначения (номера) групп сталей по двум нормативным документам Госгортехнадзора России – ПБ 03-278—99 и ПБ 03-164—97 — с целью определения возможности допуска к сварке конкретной марки (группы) стали, применяющейся в теплоэнергетике, так, например, если сварщик аттестован на сварку сталей группы М04 согласно ПБ 03-278—99, то он может быть допущен к сварке сталей групп 6 и 7 по ПБ 03-164—97.

^{**} Согласно Правилам изготовления паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды с применением сварочных технологий. ПБ 03-164—97.

ПРЕДЕЛЫ ДОПУСТИМЫХ ПО СОГЛАСОВАНИЮ С ЗАО «ПРОЧНОСТЬ МК» ОТСТУПЛЕНИЙ ОТ УСТАНОВЛЕННЫХ РД 153-34.1-003-01 НОРМ ОЦЕНКИ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

Наименование контролируемого показателя	Номер пункта, таб- лицы РД	Пределы допусти- мых отсту- плений от установ- ленных норм, %
Смещение внутренних поверхно- стей труб в стыках без подкладных колец	п. 6.2.5	30
Размеры шва	п. 6.5.7, табл. 18.2	50
Максимальный размер западания (углубления) между валиками и чешуйчатость поверхности шва	табл. 18.2	30
Максимальный размер подреза	табл. 18.2	50
Твердость металла шва	п. 18.4.4	5
Угол изгиба	табл. 18.12	10
Просвет между сжимающими поверхностями при испытании на сплющивание	п. 18.6.19, в	15
Временное сопротивление разрыву	п. 18.6.19, а	10
Ударная вязкость	п. 18.6.19, г	10
Максимальный показатель $K_{\!\scriptscriptstyle m I}$ при металлографическом исследовании	табл. 18.13	25

Наименование контролируемого показателя	Номер пункта, таб- лицы РД	Пределы допусти- мых отсту- плений от установ- ленных норм, %
Выпуклость корня шва	табл. 18.7, 18.8, п. 18.6.24, г	25
Вогнутость корня шва	табл. 18.7, 18.9, п. 18.6.24, г	20
Минимальное расстояние между соседними включениями и(или) скоплениями	табл. 18.13 (приме- чание 2)	25
Максимальный размер одиночных включений и скоплений	табл. 18.2, 18.6, 18.7, 18.13	40
Число одиночных включений и скоплений (несплошностей)	табл. 18.6, 18.7, 18.10, 18.11, 18.13	25
Суммарная приведенная пло- щадь одиночных включений и скоплений	табл. 18.6	20
Суммарная длина одиночных включений, скоплений и цепочек на длине 100 мм	табл. 18.7	20
Высота непровара в корне шва	табл. 18.6, 18.7	20
Суммарная длина непровара в корне шва	табл. 18,6, 18.7	20

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ТЕРМИНОВ, ВСТРЕЧАЮЩИХСЯ ПРИ КОНТРОЛЕ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

Номинальная толщина сваренных деталей — указанная в чертеже (без учета допусков) толщина основного металла деталей в зоне, примыкающей к сварному шву.

Расчетная высота углового шва – по ГОСТ 2601 (расчетная высота двустороннего углового шва определяется как сумма расчетных высот двух его частей, выполненных с разных сторон).

Несплошность – обобщенное наименование всех нарушений сплошности и формы сварного соединения (трещина, непровар, несплавление, включение, вогнутость и др.).

Включение — обобщенное наименование пор, шлаковых и вольфрамовых включений.

Максимальный размер включения — наибольшее расстояние между двумя точками внешнего контура включения.

Максимальная ширина включения – наибольшее расстояние между двумя точками внешнего контура включения, измеренное в направлении, перпендикулярном максимальному размеру включения.

Включение одиночное — включение, минимальное расстояние от края которого до края любого другого соседнего включения не менее трехкратной максимальной ширины каждого из двух рассматриваемых включений, но не менее трехкратного максимального размера включения с меньшим значением этого показателя (из двух рассматриваемых).

Скопление — два или несколько включений, минимальное расстояние между краями которых менее установленных для одиночных включений, но не менее максимальной ширины каждого из любых двух рассматриваемых соседних включений.

Внешний контур скопления – контур, ограниченный внешними краями включений, входящих в скопление, и касательными линиями, соединяющими указанные края.

Максимальный размер скопления — наибольшее расстояние между двумя точками внешнего контура скопления.

Максимальная ширина скопления — наибольшее расстояние между двумя точками внешнего контура скопления, измеренное в направлении, перпендикулярном максимальному размеру скопления.

Скопление одиночное – скопление, расстояние от внешнего контура которого до внешнего контура любого другого соседнего скопления или включения не менее трехкратной максимальной ширины каждого из двух рассматриваемых скоплений (или скопления и включения), но не менее трехкратного максимального размера скопления (включения) с меньшим значением этого показателя (из двух рассматриваемых).

Группа включений — два или несколько включений, минимальное расстояние между краями которых менее максимальной ширины хотя бы одного из двух рассматриваемых соседних включений. Внешний контур группы включений ограничивается внешними краями включений, входящих в рассматриваемую группу, и касательными линиями, соединяющими указанные края. При оценке качества сварных соединений группа включений рассматривается как одно сплошное включение.

Включения одиночные протяженные (при радиографическом контроле) — включения, максимальный размер которых превышает допустимый максимальный размер одиночных включений, а допустимость устанавливается только в зависимости от размеров и количества без учета их площади при подсчете суммарной приведенной площади и без включения их количества в общее количество одиночных включений и скоплений.

Приведенная площадь включения или скопления (при радиографическом контроле) — произведение максималь-

ного размера включения (скопления) на его максимальную ширину (учитывается для одиночных включений и одиночных скоплений).

Суммарная приведенная площадь включений и скоплений (при радиографическом контроле) — сумма приведенных площадей отдельных одиночных включений и скоплений.

Индикаторный след (при капиллярном контроле) — окрашенный пенетрантом участок (пятно) поверхности сварного соединения или наплавленного металла в зоне расположения несплошности.

Индикаторный след округлый (при капиллярном контроле) — индикаторный след с отношением его максимального размера к максимальной ширине не более трех.

Индикаторный след удлиненный (при капиллярном контроле) – индикаторный след с отношением его максимального размера к максимальной ширине более трех.

Индикаторный след одиночный (при капиллярном контроле) — индикаторный след, минимальное расстояние от края которого до края любого другого соседнего индикаторного следа не менее максимальной ширины каждого из двух рассматриваемых индикаторных следов, но не менее максимального размера индикаторного следа с меньшим значением этого показателя (из двух рассматриваемых).

ОРГАНИЗАЦИИ, С КОТОРЫМИ МОГУТ БЫТЬ СОГЛАСОВАНЫ ОТСТУПЛЕНИЯ ОТ РД 153-34.1-003-01 ДЛЯ ОБЪЕКТОВ МИНЭНЕРГО РОССИИ

Организация	Адрес и телефон
Департамент технического перевооружения и совершенствования энергоремонта РАО «ЕЭС России»	103074, Москва, Китай- городский пр., д. 7, тел. 220-57-13
ЗАО «Прочность МК» (правопреемник ОАО «Оргэнергострой»)	109280, Москва, Авто- заводская ул., д. 12, корп. 4, тел. 275-37-51
AOOT Всероссийский научно- исследовательский теплотехниче- ский институт (ВТИ)	109068, Москва, Авто- заводская ул., д. 14/23, тел. 275-41-18

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2. НОРМАТИВНЫЕ ССЫЛКИ	6
3. ОСНОВНЫЕ ПОЛОЖЕНИЯ ОРГАНИЗАЦИИ СВАРОЧНЫХ РАБОТ ПРИ ИЗГОТОВЛЕНИИ, МОНТАЖЕ И РЕМОНТЕ КОТЛОВ	
ИТРУБОПРОВОДОВ	. 15
4. СВАРОЧНЫЕ МАТЕРИАЛЫ	21
4.1. Электроды для ручной дуговой сварки	
4.2. Сварочная проволока	
4.3. Флюс для автоматической сварки	
4.4. Аргон, кислород, ацетилен и углекислый газ	
4.5. Вольфрамовые электроды для аргонодуговой сварки	
5. ПОДГОТОВКА ПРОИЗВОДСТВА	. 36
5.1. Требования к квалификации персонала	. 36
5.2. Проверка состояния оборудования	
для сварки, термообработки и дефектоскопии	
5.3. Входной контроль основных материалов	. 42
5.4. Входной контроль сварочных материалов и материалов	
для дефектоскопии	. 43
6. ОБЩИЕ ПОЛОЖЕНИЯ ТЕХНОЛОГИИ СБОРКИ	
И СВАРКИ СТЫКОВ ТРУБ	53
6.1. Подготовка деталей к сварке	
6.2. Сборка стыков труб	
6.3. Выполнение прихваток	
6.4. Подогрев стыков при прихватке и сварке	
6.5. Технология сварки стыков труб	
,	
7. РУЧНАЯ ДУГОВАЯ СВАРКА ТРУБ ИЗ УГЛЕРОДИСТЫХ	
И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ	. 82
7.1. Сварка трубопроводов пара и горячей воды,	
на которые распространяются правила	
Госгортехнадзора России	
7.2. Сварка труб малых диаметров	
7.3. Сварка газопроводов (трубопроводов горючего газа)	. 96

7.4. Сварка трубопроводов, на которые не распространяются правила Госгортехнадзора России	99 04 08
8. РУЧНАЯ АРГОНОДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ	
ТРУБ ИЗ УГЛЕРОДИСТЫХ	
И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ	16
8.1. Аргонодуговая и комбинированная сварка труб малых диаметров11	10
8.2. Аргонодуговая сварка корневого слоя шва стыков	10
толстостенных трубопроводов	19
8.3. Приварка подкладного кольца к трубе	
аргонодуговой сваркой 12	22
9. АВТОМАТИЧЕСКАЯ АРГОНОДУГОВАЯ СВАРКА	
НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ НЕПОВОРОТНЫХ	2
СТЫКОВ ТРУБ	ร์ป วา
9.2. Сварка корневои части шва	53 27
9.3. Заполнение разделки стыка	
•	_
10. ГАЗОВАЯ (АЦЕТИЛЕНОКИСЛОРОДНАЯ) СВАРКА ТРУБ	
ИЗ УГЛЕРОДЙСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 12	29
11. МЕХАНИЗИРОВАННАЯ СВАРКА В УГЛІЕКИСЛОМ ГАЗЕ	
ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМТРУБОПРОВОДОВ	
ИЗУПЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ	
КОНСТРУКЦИОННЫХ СТАПЕЙ	32
•	
12. АВТОМАТИЧЕСКАЯ СВАРКА ПОД ФЛЮСОМ	
ПОВОРОТНЫХ СТЫКОВ ТРУБ	39
13. ОСОБЕННОСТИ СВАРКИ ТРУБИЗ АУСТЕНИТНЫХ СТАЛЕЙ 14	11
14. ОСОБЕННОСТИ СВАРКИ ТРУБ ИЗМАРТЕНСИТНЫХ	
ИМАРТЕНСИТНО-ФЕРРИТНЫХ ХРОМИСТЫХ СТАЛЕЙ	14
15. ОСОБЕННОСТИ СВАРКИ ТРУБНЫХ ЭЛЕМЕНТОВ	
ИЗ РАЗНОРОДНЫХ СТАЛЕЙ 14	15
16. СВАРКА ГАЗОПЛОТНЫХ ПАНЕЛЕЙ КОТЛОВ	50

16.1. Общие положения	. 150
16.2. Сварка стыков труб	. 151
16.3. Сварка продольных швов	. 153
16.4. Приварка уплотнительных вставок, гребенок и накладок	. 158
17. ТЕРМООБРАБОТКА СВАРНЫХ СОЕДИНЕНИЙ ТРУБ	. 163
17.1. Общие положения	
17.2. Режимы термообработки	. 164
17.3. Оборудование, материалы и оснастка	. 170
17.4. Технология термообработки	. 179
17.5. Контроль температуры при термообработке	. 209
18. КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ	
18.1. Общие положения	
18.2. Стилоскопирование деталей и металла шва	
18.3. Визуальный и измерительный контроль	. 219
18.4. Измерение твердости металла шва	
18.5. Ультразвуковая и рэдиографическая дефектоскопия	. 228
18.6. Механические испытания и металлографические	
исследования	. 263
18.7. Прогонка металлического шара	
18.8. Капиллярный и магнитопорошковый контроль	
18.9. Гидравлические испытания	. 281
19. ИСПРАВЛЕНИЕ ДЕФЕКТОВ В СВАРНЫХ СОЕДИНЕНИЯХ	
ТРУБОПРОВОДОВ И ТРУБ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ	. 282
20. РЕМОНТ С ПОМОЩЬЮ СВАРКИ БАРАБАНОВ	
КОТЛОВ ДАВЛЕНИЕМ ДО 4 МПа (40 кгс/см²) ВКЛЮЧИТЕЛЬНО	
20.1. Общие положения	
20.2. Наплавка коррозионных раковин	
20.3. Заварка трещин	
20.4. Вварка заплат	. 294
20.5. Глушение трубных отверстий	
20.6. Устранение неплотностей вальцовочных соединений	. 298
21. ОФОРМЛЕНИЕ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ НАСВАРОЧНЫЕ РАБОТЫ	299
Приложение 1 (обязательное).	
КАТЕГОРИИ И ГРУППЫ ТРУБОПРОВОДОВ	
ПАРА И ГОРЯЧЕЙ ВОДЫ (ПО ПРАВИЛАМ	
ГОСГОРТЕХНАДЗОРА РОССИИ)	. 307

Приложение 2 (справочное).
ХИМИЧЕСКИЙ СОСТАВ СТАЛЕЙ, ПРИМЕНЯЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБОПРОВОДОВ
ИТРУБНЫХ СИСТЕМ КОТЛОВ
VI IF JOHOLA CALCULATION
Приложение 3 (справочное).
МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛЕЙ, ПРИМЕНЯЕМЫХ
ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБОПРОВОДОВ
ИТРУБНЫХ СИСТЕМ КОТЛОВ
Приложение 4 (справочное).
ОБЛАСТЪ ПРИМЕНЕНИЯ ЛИСТОВОЙ СТАЛИ
ДЛЯ ИЗГОТОВЛЕНИЯ ФАСОННЫХ ДЕТАЛЕЙ ТРУБОПРОВОДОВ 337
Приложение 5 (рекомендуемое).
СОДЕРЖАНИЕ РАЗДЕЛА «СВАРОЧНЫЕ РАБОТЫ И РАБОТЫ
ПО КОНТРОЛЮ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ»
ПРОЕКТА ПРОИЗВОДСТВА ТЕПЛОМОНТАЖНЫХ РАБОТ 338
Приложение 6 (рекомендуемое).
РЕКОМЕНДУЕМЫЕ СТРУКТУРЫ СЛУЖБ СВАРКИ
ИКОНТРОЛЯ МОНТАЖНОГО И РЕМОНТНОГО УЧАСТКОВ
Приложение 7 (справочное).
ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА
НАПЛАВЛЕННОГОМЕТАЛЛА ОТЕЧЕСТВЕННЫХ ЭЛЕКТРОДОВ
Приложение 8 (справочное).
ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА
НАПЛАВЛЕННОГО МЕТАЛЛА ЗАРУБЕЖНЫХ ЭЛЕКТРОДОВ
(ПО ДАННЫМ КАТАЛОГОВ)
Приложение 9 (справочное).
ХАРАКТЕРИСТИКА СВАРОЧНОЙ ПРОВОЛОКИ
Приложение 10 (обязательное).
ТРЕБОВАНИЯ КОДНОТИПНОСТИ СВАРНЫХ СОЕДИНЕНИЙ
Приложение 11 (рекомендуемое).
ПРИМЕРЫ ПРИСПОСОБЛЕНИЙ ДЛЯ СБОРКИ СТЫКОВ ТРУБ
Приложение 12 (рекомендуемое).
ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ ОБЛИЦОВОЧНОГО СЛОЯ
СВАРНЫХ ШВОВ СТЫКОВ ТРУБ

Приложение 13 (справочное). ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРУБОСВАРОЧНЫХ АВТОМАТОВ (СВАРОЧНЫХ ГОЛОВОК) ДЛЯ АРГОНОДУГОВОЙ
СВАРКИ НЕПОВОРОТНЫХ СТЫКОВ ТРУБ
Приложение 14 (справочное). ТЕХНИЧЕСКИЕ ДАННЫЕ ИСТОЧНИКОВ ПИТАНИЯ ДЛЯ
ТЕРМООБРАБОТКИ
Приложение 15 (справочное).
КОНДЕНСАТОРЫ СРЕДНЕЙ ЧАСТОТЫ, ПРИМЕНЯЕМЫЕ ДЛЯ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ
ПРИ ТЕРМООБРАБОТКЕ СВАРНЫХ СТЫКОВ
TIFVI TERMIOOBFABOTNE CBAFFIBIX CTBINOB
Приложение 16 (справочное).
ХАРАКТЕРИСТИКА ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ 393
Приложение 17 (справочное).
ТЕХНИЧЕСКИЕ ДАННЫЕ ГИБКИХ НЕИЗОЛИРОВАННЫХ
ПРОВОДОВ ДЛЯ ИНДУКЦИОННЫХ НАГРЕВАТЕЛЕЙ
Приложение 18 (справочное).
ТЕХНИЧЕСКИЕ ДАННЫЕ ВОДООХЛАЖДАЕМЫХ КАБЕЛЕЙ
ДЛЯ ИНДУКЦИОННЫХ УСТАНОВОК
Приложение 19 (справочное).
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРОВОЛОК (ГОСТ 12766.1)
И ЛЕНТ (ГОСТ 12766.2) ИЗ ПРЕЦИЗИОННЫХ СПЛАВОВ
ДЛЯ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ РАДИАЦИОННОГО
И КОМБИНИРОВАННОГО ДЕЙСТВИЯ
Приложение 20 (справочное).
ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ
РАДИАЦИОННОГО И КОМБИНИРОВАННОГО ДЕЙСТВИЯ 399
Приложение 21 (справочное).
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРОГРАММНОГО БЛОКА
УПРАВЛЕНИЯ ТЕРМОПРОЦЕССОМ (БУТ)
ПРИ ИСПОЛЬЗОВАНИИ НАГРЕВАТЕЛЯ ГРЭН 402
Приложение 22 (справочное).
ТЕХНИЧЕСКИЕ ДАННЫЕ ХРОМЕЛЬ-АЛЮМЕЛЕВЫХ
ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ (ТЕРМОПАР) 403

Приложение 23 (справочное). ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕРМОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ	. 406
Приложение 24 (справочное).	
ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ	
УДЛИНЯЮЩИХ ПРОВОДОВ (TУ 16.K19-04-91)	. 413
Приложение 25 (справочное).	
ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ СТИЛОСКОПИРОВАНИЯ	
ОСНОВНОГО МЕТАЛЛА ОБОРУДОВАНИЯ	. 416
Приложение 26 (справочное).	
ПЕРЕНОСНЫЕ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ТВЕРДОСТИ	. 419
Приложение 27 (рекомендуемое).	
ФОРМЫ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ	
НА СВАРОЧНЫЕ РАБОТЫ	. 421
П27.1. Перечень трубопроводов, подлежащих сдаче заказчику	
после окончания монтажа (ремонта)	. 423
П27.2. Сведения о сварных соединениях и результатах	
их контроля	. 425
П27.3. Схема расположения сварных стыков трубопровода	
П27.4. Сводная таблица сварных стыков	. 429
П27.5. Сварочный формуляр фронтового экрана котла	. 430
П27.6. Сведения о сварщиках	. 431
П27.7. Акт на проверку сварочно-технологических	
свойств электродов	. 432
П27.8. Акт на проверку соответствия присадочного	
материала марочному составу	. 433
П27.9. Акт на сварку контрольного соединения	. 434
П27.10. Акт на вырезку производственных	
сварных стыков	. 436
П27.11. Акт на визуальный контроль и измерение	
размеров шва сварных соединений	. 437
П27.12. Наряд-заказ на испытание образцов	
сварных соединений	. 438
П27.13. Протокол механических испытаний образцов	
сварных ∞единений	. 439
П27.14. Протокол металлографических исследований образцов	
сварных соединений	. 440
П27.15. Заключение по ультразвуковому контролю	
сварных срединений	441

1127.16. Заключение по радиографированию сварных	
соединений	442
П27.17. Протокол стилоскопирования деталей	
и металла шва	443
П27.18. Протокол измерения твердости металла шва	
П27.19. Журнал термообработки сварных соединений	
П27.20. Акт на проверку сварных соединений	, 111 0
	440
путем прогонки металлического шара	446
Приложение 28 (справочное).	
ДЕЛЕНИЕ СТАЛЕЙ НА ГРУППЫ	447
деление сталеи нат Руг II ю	447
Приложение 29 (обязательное).	
ПРЕДЕЛЫ ДОПУСТИМЫХ ПО СОГЛАСОВАНИЮ С ЗАО	
«ПРОЧНОСТЬМК» ОТСТУПЛЕНИЙ ОТУСТАНОВЛЕННЫХ	
РД 153-34.1-003-01 НОРМ ОЦЕНКИ КАЧЕСТВА	
СВАРНЫХ СОЕДИНЕНИЙ	151
СВАГПВІХ СОЕДИПЕПИИ	431
Приложение 30 (справочное).	
ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ТЕРМИНОВ, ВСТРЕЧАЮЩИХСЯ	
ПРИ КОНТРОЛЕ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ	453
, , , , , , , , , , , , , , , , , , ,	
Приложение 31 (обязательное).	
ОРГАНИЗАЦИИ, С КОТОРЫМИ МОГУТ БЫТЬ СОГЛАСОВАНЫ	
ОТСТУПЛЕНИЯ ОТ РД 153-34.1-003-01 ДЛЯ ОБЪЕКТОВ	
МИНЭНЕРГОРОССИИ	AEG
	450

СВАРКА, ТЕРМООБРАБОТКА И КОНТРОЛЬ трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования PTM-1c РД 153-34.1-003-01

Набор
Виктор Колесин
Верстка
Наталия Смирнова
Корректура
Вера Дроздова
Наталия Першакова
Елена Русанова
Художник
Евгений Осилов

Интернет-магазин стандартов

WWW.STANDARD.RU

– ГОСТы – СНиПы – нормы (СН и ВСН) – типовые проекты on-line заказ документов

Подписано в печать 16.09.02. Формат 84×1081/_{зг}. Печать высокая. Гарнитура «Arial». Объем 29 п. л. Тираж 3000 экз. Заказ № 1340.

ООО Издательство ДЕАН. ЛП № 000106 от 17.03.99. 191040, Санкт-Петербург, ул. Пушжинская, 10. Тел.: (812) 112-27-40. Тел./факс (812) 164-52-85. E-mail: dean@peterlink.ru.

Отпечатано с готовых диапозитивов в ФГУП «Печатный двор» Министерства РФ по делам печати, телерадиовещания и средств массовых коммуникаций.

197110, Санкт-Петербург, Чкаловский пр., 15.